- Main
Reconsidering the Structure of Serlyticin‑A
Published Web Location
https://doi.org/10.1021/acs.jnatprod.9b00859Abstract
Serlyticin-A is a secondary metabolite first isolated from a culture of Serratia ureilytica grown using squid pen as the sole carbon/nitrogen source. A previous study by Kuo et al. demonstrated that it has antioxidative and antiproliferative properties. However, the proposed chemical structure of serlyticin-A is likely incorrect based on the thermodynamic instability of its three contiguous heteroatom-heteroatom bonds. Here, we use quantum chemical calculations to predict 1H and 13C chemical shifts for serlyticin-A and demonstrate a discrepancy between the calculated and experimental chemical shifts. We then propose several reasonable alternative structures for serlyticin-A. Considering the known antioxidant and antiproliferative activity of hydroxamic acids as well as their stability and prevalence in natural products of bacterial origin, we believe that serlyticin-A is most likely 3-indolylacetohydroxamic acid (4). We provide our rationale for this assignment as well as experimental data for pure 3-indolylacetohydroxamic acid obtained via de novo synthesis. This study highlights the power of computational NMR shift prediction to revise chemical structures for natural products like serlyticin-A.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-