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The goal of this dissertation is to explore the metabolic reconfiguration of the 

submergence intolerant rice variety Oryza sativa ssp. japonica cv. M202 and the 

submergence tolerant cv. M202(Sub1) during and after submergence stress.  This work 

uses multiple analytical techniques, including nuclear magnetic resonance (NMR), gas 

chromatography – mass spectrometry (GC-MS), and reversed-phase ion-pair ultra-high 

performance liquid chromatography – mass spectrometry (RPIP-UPLC-MS) to explore 

the metabolite profiles of the tolerant and intolerant rice varieties in response to abiotic 

stress. 

 Untargeted metabolomics was used to query the metabolic impact of submergence 

on the tolerant and intolerant rice varieties.  In results obtained by both NMR 

spectroscopy and GC-MS, the metabolic profiles of the two varieties diverged as early as 

1 d of submergence.  Using both techniques, the tolerant variety was shown to 

significantly conserve carbohydrate resources.  A comparison of the NMR and GC-MS 
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results demonstrated that multiple analytical techniques provide the best metabolite 

coverage.  Additionally, a previously unreported NMR resonance was identified as 

belonging to the methyl protons of the dipeptide alanylglycine (AlaGly).  Although the 

metabolic function of the dipeptide is unclear, AlaGly was the only metabolite to 

decrease during submergence and not recover during the 1 d recovery period. 

 RPIP-UPLC-MS analysis provided a more targeted approach to metabolite 

profiling because of the sample preparation method employed and the selectivity of the 

RPIP separation for  hydrophilic and ionic analytes.  Phosphorylated mono- and 

disaccharides were targeted because of their signaling role in plant metabolism.  For 

example, changes in trehalose-6-phosphate (T6P) levels, a key metabolite responsible for 

carbon sensing and flowering in plants, were monitored during and after submergence in 

the tolerant and intolerant rice varieties. 

 The development of automated and high-throughput chemometric techniques is 

critical for advances in disease detection, biomarker identification, and toxicological 

profiling.  The coupling of untargeted metabolite profiling by NMR spectroscopy with a 

new chemometric approach based on z-score analyses, Visual Interpretation of Z-Score 

Ratios (VIZR), was used to determine differences in spectra from human urine and due to 

dietary supplementation.  This approach can also be extended to biomarker identification 

in plants and other organisms. 
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Figure 1.1.            4 

A general schematic representing the organization and relationship of the 

components of systems biology.  The production of a metabolite does not 

necessarily correlate with the response of the preceding steps but can be 

dependent on translation, protein activation, and other biological signals. 
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Representative 600 MHz 1H NMR spectra showing the methyl resonances of 

20 mM valine and 5 mM isoleucine, a) with  integral regions manually 

defined for each resonance, b) after deconvolution with peak fitting, and c) 

using binned integral regions (shown in red).  Fitted data in panel b) is shown 

in blue and green for valine and isoleucine, respectively, with the residual 

discrepancy between the calculated and actual spectrum shown in red.  Peak 

fitting was performed using ACDlabs Spectrus Processor. 
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The RPIP separation mechanisms illustrated with trehalose-6-phosphate as 

the analyte and dibutylamine as the IPR.   (a) The dynamic exchange model 

for RPIP in which the IPR coats the stationary phase and acts by an anion-

exchange mechanism to retain oppositely charged ions.90  (b) The formation 

of an ion-pair in solution allows analyte retention through the interaction of 

the lipophilic side chains of the IPR with the stationary phase.91 
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(a) Analyte quantitation by an external calibration curve.  The equation of the 

best fit line can be used to calculate the concentration of the analyte using the 

response measured for the sample.  (b) A standard addition calibration curve 

generated by adding known amounts of the analyte to the sample.  The 

concentration of the analyte in the sample is determined by the x-axis 

intercept.  (c) For quantitation by isotope dilution, a known amount of an 

isotopically labeled analogue of the analyte of interest is added to the sample 

and the analyte and standard peaks are resolved due to differences in m/z. 
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A schematic showing the isolation of an analyte by solid-phase extraction 

(SPE).  Following cartridge-specific washing steps, the sample containing the 

analyte of interest (red circles) and other components (green and blue circles) 

is loaded into the cartridge.  A washing step removes poorly retained matrix 

components as waste while the analyte is retained on the cartridge.  The 

analyte is subsequently eluted from the cartridge and collected for analysis. 
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Figure 1.6.            43 

An example of PCA performed on an NMR metabolomics dataset showing 

the (a) scores and (b) loadings plots.  The various symbols in the scores plot 

(a) represent the 10 individual treatments, with five samples from each 

treatment analyzed. Consistent sample groupings within a treatment are 

highlighted by ellipses.  The samples that do not group separately are 

enclosed by a rectangle.  The numbers in the loadings plot (b) are the 

different NMR bins that are responsible for the separation of the different 

treatments in (a). 
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(a) The hormone cascade involved in rice submergence response.  Upon 

complete submergence, ethylene is entrapped resulting in decreased 

bioactivity of abscisic acid and an increase in gibberellic acid activity, 

resulting in shoot elongation.  In the presence of SUB1A, however, the 

activity of gibberellic activity is abrogated, resulting in reduced growth and 

carbohydrate conservation. (b) An illustration highlighting the difference in 

the growth of plants exhibiting either the quiescence or escape strategy. 
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The biochemical pathways involved with glycolysis and ethanolic 

fermentation and some of the primary metabolites that can be affected by 

pathway perturbations, including the nitrogen metabolism, amino acid 

production, and TCA cycle metabolites. 

 

Figure 2.1.           81 

Selected regions from representative 1H NMR spectra comparing the 

M202(Sub1) and M202 rice varieties at different submergence time points: 

(a)  and (e) M202 1 d control (1dc), (b) and (f)  M202(Sub1) 1dc, (c) and (g) 

M202 at 3 d submergence, and (e) and (h) M202(Sub1) at 3 d submergence. 

The well-resolved resonances of selected metabolites are labeled. 

 

Figure 2.2.           84 

Relative abundance of sucrose and glucose over the time course of short-term 

submergence and recovery in the two rice genotypes, M202 (■) and 

M202(Sub1) (○). (a) The trajectory plot shows the sucrose/glucose ratios 

determined from the raw integrated NMR data.  The trajectory plots for (b) 

sucrose and (c) glucose show the relative abundance of each metabolite after 

sum normalization.  Each point is the average of at least five biological 

replicates with the error bars representing the standard deviation.   Asterisks 

represent a significant difference between the varieties at the 95% confidence 

interval. Treatment time points: 1 d control (1dc), 1, 2, 3 d submergence (1d, 

2d, 3d), and 3 d submergence + 1 d recovery (1R). 
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Figure 2.3.           86 

(a) The scores plot showing the first two principal components for the long-

term experiment. The legend identifies the treatments for the M202 variety.  

A similar scheme but with open symbols represents the M202(Sub1) variety.  

(b) The loadings plot showing the variables contributing most to the variance 

along the first two principal components.   
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(a) The scores plot showing the first two principal components from the 

short-term experiment. The legend identifies the treatments for the M202 

variety.  A similar scheme but with open symbols represents the M202(Sub1) 

variety.  (b) The loadings plot showing the variables contributing most to the 

variance along the first two principal components.   

 

Figure 2.5.           94 

Abundance of detected metabolites over the time course of short-term 

submergence and recovery for M202 (■) and M202(Sub1) (●) by NMR. 

Each data point represents the average of metabolite levels determined from 

normalized peak areas of at least five biological replicates with the error bars 

indicating the standard deviation.  Asterisks indicate a significant difference 

between the varieties at the 95% confidence interval. Treatment time points: 

1 d control (1dc), 1, 2, 3 d submergence (1d, 2d, 3d), and 3 d submergence + 

1 d recovery (1R). 
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Pathway diagram with bar graphs representing relative metabolite abundance 

as a function of treatment.  Each bar graph represents normalized average 

metabolite levels of at least 5 biological replicates at either 1dc, 1, 2, 3 d 

submergence (1d, 2d, 3d), and 3 d submergence + 1 d recovery (1R).  

Asterisks indicate a significant difference between the varieties at the 95% 

confidence interval. 

 

Figure 2.7.            99 

TOCSY spectrum of extracted rice shoot tissue containing AlaGly.  The 

correlation of the methyl resonance (1.55 ppm) with the methine resonance 

(4.15 ppm) can be clearly seen and are labeled as “a” and “b”, respectively, 

to correlate with a proposed structure of the compound (inset).  The question 

marks represent unknown parts of the compound. 
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Figure 2.8.           100 
1H-13C HMBC of (a) a rice sample extract containing alanylglycine and (b) 

racemic alanylglycine standard at 5 mM.  The arrows in (a) indicate the 

alanylglycine resonances. The labels in (b) are included to correlate the 

identified resonances with their respective positions in AlaGly (inset).  

Question marks represent parts of the compound that could not be elucidated 

with the HSQC experiment. 

 

Figure 2.9.          101 
1H-13C HSQC of (a) a rice sample extract containing alanylglycine and (b) 

racemic alanylglycine standard at 5 mM.  The arrows in (a) indicate the 

alanylglycine resonances.  The labels in (b) are included to correlate the 

identified resonances with their respective positions in AlaGly (inset).  

Question marks represent parts of the compound that could not be elucidated 

with the HSQC experiment. 

 

Figure 3.1.          119 

Representative GC-MS total ion chromatograms for the M202 variety a) 

control (day 0), b) 3 d submergence, and c) 3 d submergence + 1 d post-

submergence recovery.  Identified metabolites include Asp (14.12 min), 

GABA (14.28 min), glycerate (11.60 min), Gly(11.33 min), Ile (11.12 min), 

malate (13.71 min), pyroglutamate (14.20 min), Ser (12.02 min), succinate 

(11.41 min), Thr (12.37 min), and threonate (14.57 min). Peaks due to 

FAMES markers are indicated with an asterisk at 11.63 min and 14.26 min. 

 

Figure 3.2.           121 

Scores plot (a) showing principal components 1 and 2. The legend identifies 

the individual treatments for the M202 variety. The same scheme but with 

open symbols was used to represent the M202(Sub1) samples. The loadings 

plot (b) shows the variables that contributed most to the variance along the 

first and second principal components.  

 

Figure 3.3.          123 

Trajectory plots from the GC-MS experiments representing the average 

normalized relative peak areas for M202 (■) and M202(Sub1) (●). Time 

points are connected using solid (M202) or dotted (M202(Sub1)) lines. 

Treatments are labeled as 1 d control (1dc), 1d, 2d, 3d submergence and 3d 

submergence + 1d post-submergence recovery (1R).  Each data point 

represents the average of at least three biological replicates with error bars 

representing the standard deviation and asterisks indicating differences 

between then genotypes with a P-value < 0.05.   
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Figure 3.4.           134 

Trajectory plots comparing the normalized metabolic profiles measured using 
1H NMR (○) and GC-MS (■) for the M202 tissue.  Time points indicate 

controls (1dc), 1d, 2d, 3d submergence or 3d submergence followed by 1d 

post-submergence recovery (1R).  Each data point represents the averaged 

normalized area of at least three biological replicates for the GC-MS data or 

five biological replicates for the NMR data with error bars indicating the 

standard deviation.   

 

Figure 3.5.           135 

Trajectory plots comparing the normalized metabolic profiles measured using 
1H NMR (○) and GC-MS (■) for the M202(Sub1) tissue.  Time points 

indicate controls (1dc), 1d, 2d, 3d submergence or 3d submergence followed 

by 1d post-submergence recovery (1R).  Each data point represents the 

averaged normalized area of at least three biological replicates for the GC-

MS data or five biological replicates for the NMR data with error bars 

indicating the standard deviation.   

 

Figure 3.6.           137 

Stacked plots of the TICs from the GC-MS (left) and NMR (right) results 

showing the regions containing Glu and Gln.  Only data from the extracts of 

the M202 variety are shown for simplicity but the data are representative of 

both genotypes.  The time points indicate a control (1dc), 1d, 2d, 3d of 

submergence or 3d submergence followed by 1d post-submergence recovery 

(1R). For the GC-MS data, the TIC’s are scaled to Glu. 

 

Figure 3.7.          139 
1H NMR spectrum (a) and GC-MS chromatogram (b) measured for extracts 

of the same M202 control rice tissue showing the differences in the response 

of the two analytical platforms for Ala and AlaGly.    AlaGly is present in 

greater abundance than Ala in this sample as judged by the relative intensity 

of the NMR resonances but is not detectable in the GC-MS TIC. The 

retention time indicated on the chromatogram in (b) shows the expected 

elution time based injection of an AlaGly standard.  An asterisk indicates the 

FAMEs retention index marker in (b). 

 

Figure 4.1.            150 

The experimental approach used to interrogate the effects of submergence 

and the diurnal cycle.  Control and stressed plants were harvested at 3 d of 

submergence and at each proceeding time point for each of the M202 and 

M202(Sub1) varieties. 
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Figure 4.2.            161 

Trajectory plots from the GC-MS data representing the average area 

(counts/min) for M202 (■) and M202(Sub1) (●).  The time points are 

connected using black (M202) or red (M202(Sub1)) lines.  The treatments are 

labeled as Sub Control, Dusk Control, Midnight Control, Dawn Control, and 

24Hr Control to represent control tissue at each time point.  Each data point 

is the replicate of at least 5 biological replicates and error bars represent 

standard deviation.  Metabolites below the limit of quantitation are indicated 

with an asterisk.

 

Figure 4.3.            163 

Trajectory plots of NMR data as relative normalized area for M202 (■) and 

M202(Sub1) (●).  The time points are connected using black (M202) or red 

(M202(Sub1) lines.  The treatments are labeled as Sub Control, Dusk 

Control, Midnight Control, Dawn Control, and 24Hr Control to represent 

control tissue at each time point.  Each data point is the average of at least 5 

biological replicates and error bars represent the standard deviation. 

Metabolites below the limit of quantitation are indicated with an asterisk. 

 

Figure 4.4.            170 

Trajectory plots from the GC-MS data representing the average area 

(counts/min) for M202 (■) and M202(Sub1) (●).  The time points are 

connected using black solid (M202) or red dotted (M202(Sub1) lines.  The 

treatments are labeled as the control (SubC), submerged (Sub), and recovery 

time points Dusk, Midnight, Dawn, and 24hr.  Each data point is the average 

of at least 5 biological replicates and error bars represent standard deviation. 
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Trajectory plots from the NMR data representing the relative normalized 

average area for M202 (■) and M202(Sub1) (●) samples.  The time points are 

connected using black (M202) or red (M202(Sub1) lines.  The treatments are 

labeled as the control (SubC), submerged (Sub), and recovery time points 

Dusk, Midnight, Dawn, and 24hr.  Each data point is the average of at least 5 

biological replicates and error bars represent standard deviation. 

 

Figure 4.6.            179 

Extracted ion chromatograms obtained by RPIP-UPLC-MS from an injection 

of a 20 μM standard mixture of (a) phosphorylated monosaccharides G6P, 

F6P, G1P, and F1P and (b) phosphorylated disaccharides T6P and S6P.  
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Figure 4.7.            182 

(a) Representative RPIP-UPLC-MS chromatogram of a 20 μL injection of a 

metabolite extract from M202 control tissue.  (b) Extracted ion 

chromatogram of m/z 421.27 showing T6P, S6P, and an unknown peak at 

retention time 10.44 min.  (c) Extracted ion chromatogram of m/z 259.14 

showing G6P and two minor peaks that could not accurately be identified.   

 

Figure 4.8.          184 

Trajectory plots from RPIP-UPLC-MS data representing either area 

(arbitrary units) or peak height (counts) for M202 (■) and M202(Sub1) (●).  

The time points are connected using black (M202) or red (M202(Sub1) lines.  

The treatments are labeled as SubC, DuskC, MidnightC, DawnC, and 24hC 

to represent control tissue at each time point.  Each data point is the replicate 

of at least 5 biological replicates and error bars represent the standard 

deviation. 
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Trajectory plots from RPIP-UPLC-MS representing either area (arbitrary 

units) or peak height (counts) for M202 (■) and M202(Sub1) (●).  The time 

points are connected using black (M202) or red (M202(Sub1)) lines.  The 

treatments are labeled as the control (SubC), submerged (Sub), and recovery 

time points Dusk, Midnight, Dawn, and 24hr.  Each data point is the replicate 

of at least 5 biological replicates and error bars represent the standard 

deviation. 

 

Figure 4.10.          190 

Trajectory plots from RPIP-UPLC-MS representing peak height (counts) for M202 

(■) and M202(Sub1) (●).  The time points are connected using black (M202) or red 

(M202(Sub1)) lines.  (a) Measurements from the diurnal experiment with treatments 

labeled as Sub Control, Dusk Control, Midnight Control, Dawn Control or 24hr 

Control.  (b) Measurements after submergence and recovery with treatments labeled 

as the control (Sub Control), submerged (Sub), and recovery time points Dusk, 

Midnight, Dawn, and 24hr.  Each data point is the replicate of at least 5 biological 

replicates and error bars represent the standard deviation. 
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Figure 5.1.            212 

Scores and loadings plots from PCA of 50 different urine samples, 41 of 

which are control samples collected at random intervals after following a 

regular diet (as reported by the volunteers), 8 are test samples collected after 

dietary supplementation of ibuprofen, ethanol, or an energy drink, and a 9th 

test sample was generated by diluting a control sample by 50%.  (a) Scores 

and (b) loadings plots from PCA performed on unnormalized data with the 

integral bins corresponding to creatinine removed. (c) Scores and (d) 

loadings plots from PCA performed on sum normalized data with the integral 

bins corresponding to creatinine removed. The legend in (c) is the same as 

that used in (a). 

 

Figure 5.2.             213 

(a) Scores and (b) loadings plots from PCA of 50 different urine samples, 41 

of which are control samples collected at random intervals after following a 

regular diet (as reported by the volunteers), 8 are test samples collected after 

dietary supplementation of ibuprofen, ethanol, or energy drinks, and a 9th test 

sample was generated by diluting a control sample by 50%.  PCA was 

performed on the unnormalized data and the integral bins corresponding to 

creatinine are included. 

 

Figure 5.3.             214 

(a) Scores and (b) loadings plots from PCA of 50 different urine samples, 41 

of which are control samples collected at random intervals after following a 

regular diet (as reported by the volunteers), 8 are test samples collected after 

dietary supplementation of ibuprofen, ethanol, or energy drinks, and a 9th test 

sample was generated by diluting a control sample by 50%.  PCA was 

performed on creatinine normalized data and the integral buckets 

corresponding to creatinine are not included. 

 

Figure 5.4.            217 

Heat maps reflecting z-score differences of urine samples after the ingestion 

of (a) an alcoholic beverage and (b) ibuprofen.  The threshold for coloration 

(as indicated by the legend) was chosen according to the number of standard 

deviations the bin values are from the mean of the control samples: <13 

white, 13 - 17  light blue, 17 - 21 dark blue, 21 - 25 purple, and >25 red. The 

red vertical line at 6.52 ppm in both figures is due to variation in the spectral 

baseline.  
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Figure 5.5.            218 

Heat maps reflecting z-score differences of (a) a representative control 

sample urine sample and (b) a urine sample taken after the ingestion of an 

energy drink.  The threshold for coloration (as indicated by the legend) was 

chosen according to the number of standard deviations that bin values are 

from the mean of the control samples: <13 white, 13 - 17  light blue, 17 - 21 

dark blue, 21 - 25 purple, and >25 red. The red vertical line in (b) is due to 

variation in the spectral baseline.  

 

Figure 5.6.            222 

(a) The averaged NMR spectrum of the control group, (b) the spectrum of a 

urine sample after ingestion of an alcoholic beverage (ethanol sample), (c) 

the z-score projection of the urine ethanol sample, and (d) the 1H NMR 

spectrum of ethanol dissolved in the same buffer as the urine samples.  The z-

score projection (c) of this sample highlights the CH3 and CH2 peaks of 

ethanol as significantly different compared to the control sample average, 

even for the CH2 peak which occurs in the crowded region of the spectrum.  

Figures (a), (b) and (c) were generated by VIZR and the NMR spectrum in 

(d) was added for comparison purposes. 

 

Figure 5.7.            223 

(a) The averaged NMR spectrum of the control group, (b) the spectrum of a 

urine sample after ingestion of ibuprofen, (c) the z-score projection of a urine 

sample after ingestion of ibuprofen, and (d) the 1H NMR spectrum of 

ibuprofen dissolved in the same buffer as the urine samples. Figures a, b and 

c are generated by VIZR and the NMR spectrum in (d) was added for 

comparison purposes.  

 

Figure 5.8.            224 

(a) The averaged NMR spectrum of the control samples, (b) the raw NMR 

spectrum of a urine sample taken after ingestion of an AMPTM energy drink 

(c) the z-score projection of the urine sample after ingestion of an AMPTM 

energy drink and (d) the spectrum of the AMPTM energy drink diluted in the 

same buffer as the urine samples.  Figures (a), (b), and (c) were generated by 

VIZR and the NMR spectrum in (d) was added for comparison purposes. 

 

Figure 5.9.            226 

Scatter plot of the total z-value obtained from the matrices of the full data set.  

The x-axis represents the sample number, with the control samples on the left 

(up to 41) and the test samples on the right (42 to 50). The y-axis gives the 

total z-value for each sample.  Horizontal lines representing 1, 2 and 4 

standard deviations from the control sample mean are included.  Selected 

labels have been added to facilitate sample identification.   
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CHAPTER ONE 

Introduction 

Based in part on papers published in the Encyclopedia of Magnetic Resonance, Journal of 

Proteome Research, and Analytical and Bioanalytical Chemistry 

Encycolpedia of Magnetic Resonance, Harris, R. K.; Wasylishen, R. E., Eds. John Wiley: 

Chichester, 2011 

Anal. Bioanal. Chem. 2012, 404, 1165-1179 

J. Proteome Res. 2012, 11, 320-330 

J. Proteome Res. 2013, 12, 898-909 

 

 The primary goal of the research presented in this dissertation is to apply 

analytical techniques in biological systems to better understand the metabolic impact of 

abiotic stress on crop species.  Specifically, the metabolism of the near isogenic lines 

Oryza sativa ssp. japonica cv. M202 (submergence intolerant) and Oryza sativa ssp. 

japonica cv. M202(Sub1) (submergence tolerant) will be compared during and after 

submergence stress to better understand the effect a single gene can have on crop survival 

during extreme flooding events.  Because the metabolome is comprised of a diverse array 

of compounds with a wide variety of sizes, structures, and functional groups, the use of 

multiple analytical techniques is required to fully characterize metabolic changes.  

Metabolite profiling experiments can be conducted using targeted and untargeted 

approaches, and both are used in this work.  This dissertation describes the identification 

and quantitation of a wide variety of metabolites using mass spectrometry (MS) and 
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nuclear magnetic resonance (NMR) experiments as well as the development of a novel 

chemometric technique for biomarker identification and comparison of individual 

samples within a group. 

 This dissertation builds upon the work of previous group member Dr. Kayla 

Kaiser to better understand the effects of low-oxygen stress on plant metabolism and 

applies 1H NMR, gas chromatography - mass spectrometry (GC-MS), and solid phase 

extraction (SPE)  and reverse-phase ion-pair (RPIP) liquid chromatography - mass 

spectrometry (LC-MS) for the targeted identification and quantitation of anionic 

compounds, and the development of chemometric techniques for biomarker discovery, 

toxicological studies, and sample discrimination.  The goals of the research presented in 

this dissertation are carried out through the following objectives: 

 

Objective 1:  Compare the metabolic differences of the M202 and M202(Sub1) cultivars 

resulting from both short term and long term submergence stress using 1H NMR 

spectroscopy (Chapter 2). 

Objective 2:  Expand the coverage of the metabolomes of the two cultivars during short 

term submergence stress and control conditions using GC-MS analysis and compare the 

results with those obtained by NMR spectroscopy (Chapter 3). 

Objective 3: Develop an RPIP-LC-MS method for the detection and quantitation of 

phosphorylated compounds and monitor their changes in rice tissue during submergence 

and recovery (Chapter 4). 
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Objective 4:  Develop an automated chemometric technique using z-scores for the 

statistical discrimination of individual biosamples and identification of potential 

biomarkers (Chapter 5). 

  

This introductory chapter first presents background information about 

metabolomics followed by discussions of the applications of NMR, GC-MS and LC-MS 

for the identification and quantitation of metabolites.  The chapter is concluded with a 

discussion of chemometric methods for the analysis of biological data sets. 

 

1.1 Metabolomics 

Metabolomics focuses on measurements of small molecule metabolites in 

complex biological samples.  Recent advances in analytical platforms, sample preparation 

protocols, hyphenated techniques, throughput, and statistical analysis methods have 

enabled metabolic measurements addressing increasingly complex problems in plant 

biology.  These advances are enabling a deeper understanding of the metabolic responses 

of plants and other organisms to genetic and environmental perturbations. 

The study of metabolism can be pursued through a variety of strategies.1  One 

strategy is to adopt a “targeted analysis” approach which studies a specific genetic 

alteration and the resulting metabolic product.  “Metabolite profiling” experiments seek 

to understand the function of an entire pathway or interactions between pathways by  
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Figure 1.1.  A general schematic representing the organization and relationship of the 

components of systems biology.  The production of a metabolite does not necessarily 

correlate with the response of the preceding steps but can be dependent on translation, 

protein activation, and other biological signals. 
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targeting a specific class of molecules for analysis, often using enzymatic assays or 

labeled compounds.  In contrast to targeted approaches, “metabolite fingerprinting” does 

not necessarily focus on the identification of specific metabolites but rather examines 

global metabolic changes as a function of a known perturbation such as a genetic 

mutation, biotic or abiotic stress, etc.  Finally, the comprehensive analysis of the 

metabolites in a biological system is termed “metabolomics” although this term is 

sometimes mistakenly applied to the above strategies.  Regardless of the approach 

chosen, delineating metabolic responses of an organism to stress conditions, genetic 

modifications, and environment perturbations is pivotal to understanding plant biology.  

Figure 1.1 shows the general organization and relationship of the “omics” from DNA to 

metabolites.   

Although the relationships in Figure 1.1 appear to be linear, many factors can 

influence the production of a metabolite. Metabolites are produced via biochemical 

pathways operated by specific enzymes. An enzyme is a single protein or a complex of 

proteins encoded by one or multiple genes in the chromosome.  Coordinated production 

of a gene transcript and the encoded enzyme, as well as other enzymes required for a 

pathway, is one prerequisite for metabolite production. However, there are multiple levels 

of regulation following gene transcription, including the synthesis, accumulation and 

subcellular targeting of the protein. There are many examples where the abundance of 

mRNA transcript levels (transcriptome) do not necessarily correlate with the production 

of the encoded protein, such as an enzyme. When pathways require multiple enzymes, the 

absence of one enzyme can block the accumulation of the metabolite, sometimes 
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resulting in increased levels of the precursor. Similarly an enzymatic reaction to produce 

or catabolize a metabolite may be suppressed because the enzyme is not in an active state 

or because the reaction may be limited by the levels of a required cofactor. Only when all 

components of the schematic represented in Figure 1.1 are considered together, can a 

more thorough understanding of systems biology be obtained. 

Plant metabolomics poses a unique challenge compared with mammalian systems 

due to the complex and sessile nature of plants.  Plants are estimated to produce as many 

as 200,000 metabolites, for many of which structures are unknown.2, 1  Plant 

metabolomics has been employed to understand the response of plants to hypoxia stress,3 

improve crop stress-resistance,4, 5  identify the botanical origins of a product, such as 

honey,6 and evaluate wine quality.7  

A variety of analytical platforms have been used in plant metabolomics studies.  

These techniques include nuclear magnetic resonance spectroscopy (NMR)8-10 as well as 

mass spectrometry (MS) hyphenated with gas chromatography (GC),11, 12 capillary 

electrophoresis (CE),13 and liquid chromatography (LC).14 Mass spectrometry is thus far 

the favored platform for plant metabolomics studies because it offers greater sensitivity 

and simple coupling to chromatographic separations, however a more thorough 

exploration of the metabolome is best achieved through a combination of both NMR and 

MS.   

1.2 NMR-based metabolomics studies 

NMR has been widely used over several decades to explore biochemical 

pathways of mammals, plants, fish, fungi, and insects as well as in biomarker 
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identification for disease diagnosis and juice adulteration. 15, 8, 16-20  Although less 

sensitive than MS-based analyses, NMR is non-destructive, inherently quantitative, and 

requires no sample derivatization.21 With these advantages, NMR was introduced for 

metabolite profiling as early as the 1970’s when Brown and coworkers used 1H NMR 

spectra to profile metabolites in intact human erythrocytes.16  Additional metabolite 

profiling experiments were reported in the early 1980’s by Moore et al.22 and Nicholson 

and coworkers.23  Recent work using NMR in mammalian systems has led to clinical 

application of NMR metabolite profiling of intact tissues,24 pharmacogenomics,25 and 

evaluation of the geographical dependence of cardiovascular risks.19  

 Despite the wide variety of organisms studied by NMR spectroscopy, 

mammalian and plant systems have been the most widely examined due to the 

relationship of metabolism to human disease and the interest in crop viability for 

increased food production and sustainability.26, 27  Due to pronounced biochemical 

differences between organisms, even within a given family, and tissue types, the methods 

selected for metabolite extraction, and data analysis, pre-processing, and interpretation 

must be addressed specifically for the intended study due to their effects on absolute or 

relative quantitation in addition to the consideration of platform specific experimental 

parameters.10, 28  

The goal of a metabolomics experiment is to not only to identify the metabolites 

present in a sample but to quantify changes in the levels of detected metabolites in 

response to a biotic or abiotic stress.  NMR experiments for either absolute or relative 

quantitation require careful consideration of the acquisition and processing parameters to 
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ensure a robust analysis.29 The resonances of interest must be of adequate signal-to-noise 

ratio (S/N).  For absolute quantitation, a S/N in excess of 100:1 is preferred while for 

relative quantitation, a S/N in excess of 10:1 can be acceptable.30, 31    Signal averaging is 

a simple method for increasing S/N, however, since gains are proportional to the square 

root of the number of scans coadded, significantly longer analysis times may provide 

only modest S/N improvements.32   

1.2.1 Considerations for Quantitative Metabolomics Experiments by NMR  

Szántay et al. discussed other ways of increasing S/N, including using higher 

magnetic fields, cryoprobes, and microcoil probes.33  NMR sensitivity increases roughly 

as B0
3/2, where B0 is the strength of the applied magnetic field. Therefore switching from 

a 9.4 T magnet (400 MHz 1H) to one operating at 18.8 T (800 MHz 1H) will increase 

sensitivity by a factor of about 2.8.34  Unfortunately, as the incremental cost for 

purchasing higher field magnets is also nonlinear, this option may be financially 

impractical and investigators are typically limited to performing experiments using the 

instruments available at their site.  Despite their expense, higher field magnets are 

important for the advancement of NMR applications because of increased resolution, 

relaxation effects, and physical effects (such as TROSY) and the spectrometer should be 

chosen according the experimental requirements.  Cryogenically cooled NMR probes and 

receivers, also known as cryoprobes or cold probes, are an alternative approach to 

increasing S/N, providing up to a factor of four increase in sensitivity compared to 

conventional probes.35  Cryoprobes increase S/N by decreasing contributions from 

Johnson noise by cooling the coil and preamplifier to ~25 K. The S/N improvement 



 9 

actually achieved may be significantly less than four as cryoprobe performance can be 

adversely affected by high salt concentrations which are common in biological samples.  

Despite their sensitivity advantage, cryoprobes are expensive to maintain and are often 

used with a dedicated magnet.  For mass-limited samples, microcoil or microstrip probes 

provide an alternative mechanism for increasing NMR sensitivity.34, 36  These probes 

have been reported to detect as low as picomole quantities of analytes, and can enable the 

acquisition of NMR spectra for samples only available in limited amounts, which would 

be difficult or impossible to analyze using conventional instrumentation.   Additionally, 

microcoil probes can be easily coupled with online separations such as capillary 

electrophoresis or capillary isotachophoresis, as reviewed by Jones and Larive.37   

Regardless of the hardware available to the experimenter, careful selection of 

acquisition and processing parameters is important in quantitative NMR experiments.  

Keeping acquisition times short without truncating the free induction decay (FID) 

reduces the amount of noise collected; an acquisition time that is three times the apparent 

transverse relaxation time (T2*) will acquire 95% of the signal.  Adequate digital 

resolution, which depends on the number of data points sampled during the acquisition 

time and the spectral width, is required if the spectra are to be used for quantitation. Each 

well-resolved resonance of interest should be represented by at least 5 data points to 

obtain a reliable integral, and more  may be needed to accurately deconvolve overlapped 

resonances, as discussed in section 1.2.7.38 The digital resolution of the spectrum can be 

improved by zero filling, which involves the addition of zeros to the end of the acquired 

FID.  Linear prediction can increase digital resolution by predicting the values of missing 
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data points, providing a better approximation of the data than is achieved through zero 

filling.  Use of linear prediction can also decrease the degree of apodization required by 

reducing FID truncation errors.   The application of weighting functions can increase the 

S/N but at a cost in spectral resolution.39, 38 

The quality of quantitative NMR experiments can be evaluated by determining 

the accuracy, precision, and error/uncertainty associated with the measurement.  

Precision is defined as the closeness of agreement between a series of measurements of 

the same sample.  Precision of integration is also dependent on the S/N of the measured 

signals.  If the S/N is greater than 200:1, then a precision greater than 99%  can be 

achieved.30  To evaluate precision, the repeatability and comparability can be determined.  

Measurement repeatability measures the same sample multiple times by the same 

instrument.31  Comparability can be evaluated through inter-laboratory measurements,40 

where the same sample is measured using different spectrometers operating at different 

magnetic fields and by different users.  If the measurements are performed carefully with 

the same acquisition parameters, a coefficient of variation less than 1% has been 

observed for both repeatability and comparability.30  Additionally, all errors and 

uncertainties should be evaluated for the whole measurement procedure, including molar 

ratios, assay determinations,  atomic masses, uncertainties in instruments, and the 

standard reference material.30, 29 

1.2.2 Absolute and Relative Quantitation by NMR 

The longitudinal (T1) relaxation rate is also an important consideration in a NMR 

experiment.  Absolute quantitation requires the nuclei to be fully relaxed prior to each 
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scan using a recycle period that is at least 5 times the longest T1 relaxation time of the 

species to be measured.30, 29 Alternatively, it is possible to use a shorter relaxation delay 

and correct for incomplete relaxation using T1 relaxation times measured in the sample 

matrix.   For metabolomics experiments, which are mostly based on relative quantitation, 

repetition rates faster than 5T1 increase sample throughput and permit comparison of 

samples in different classes provided that all experimental parameters, including the 

sample matrix, are consistent.   

1.2.3 Spectral Referencing for NMR Experiments 

Spectral referencing (chemical shift referencing) and internal calibration standards 

are another important consideration for an NMR metabolomics experiment.  Several 

compounds, such as TMSP (sodium-3-trimethylsilylpropionate-d4) and DSS (sodium-2,2-

dimethyl-2-silapentane-5-sulfonate-d6) are commonly used to reference spectra and can 

also be used as internal calibration standards.41, 42  There are several specific requirements 

that chemical shift reference and internal calibration standards must meet: the reference 

peaks should not overlap with other signals in the sample, the compound should produce 

a small number of well-defined signals (such as singlets), it should be chemically stable 

and not adversely effected by the experimental pH.41  Several recent articles have 

described a variety of compounds potentially useful as internal standards and chemical 

shift reference compounds.31, 41, 42 

1.2.4 Solvent Suppression 

 Because many biological samples (for example, urine and serum) are in an 

aqueous matrix, solvent suppression is an important consideration for 1H NMR 
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experiments.  By allowing use of the maximum receiver gain, suppression of the solvent 

resonance can increase the S/N of the spectrum allowing better quantitation of lower 

abundance metabolites.  Solvent suppression also reduces radiation damping, a common 

problem in high Q-factor probes such as cryoprobes. Although a wide range of solvent 

suppression methods have been introduced, most have the disadvantage that they also 

suppress (at least partially) analyte resonances close in frequency to the solvent peak, 

rendering their quantification unreliable.  

Presaturation or selective saturation, which uses a long low power pulse at the 

frequency of the solvent resonance, is the most common water suppression technique and 

among the simplest to implement.43  A disadvantage of presaturation is that it can result 

in the transfer of saturation to exchangeable protons, such as amides, making their 

quantification impossible.  One of the biggest drawbacks of presaturation is that it can 

cause baseline distortions around the suppressed region, negatively impacting 

quantitation of analyte signals.   

For effective solvent suppression with minor effects on exchangeable protons, 

gradient-based suppression techniques can be used.  Water suppression enhanced through 

T1 effects (WET) is a widely used solvent suppression method.  WET is a pulsed-field 

gradient (PFG) based experiment which uses a selective pulse to excite the solvent 

resonance which is then attenuated using dephasing gradients.44  WET uses a shorter 

pulse than presaturation so it is less likely to attenuate exchangeable protons. It avoids 

baseline distortions and nulls, and can easily be used to simultaneously suppress multiple 

solvent signals.  There is also a version of WET, termed Secure WET, for use on 
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cryoprobes.45  Disadvantages of WET solvent suppression include the need to create the 

shaped pulse and optimize the gradient powers to ensure optimal solvent suppression. If 

the WET parameters are set improperly, baseline distortions around the solvent signal can 

occur interfering with quantitation of neighboring resonances.   

The WATERGATE (water suppression by gradient-tailored excitation) pulse 

sequence also employs PFG’s to attenuate the water resonance. In this method, a 

nonselective excitation pulse is followed by a gradient pulse that dephases all the 

resonances. Then a composite pulse is applied to effectively invert all of the resonances 

except for the solvent.46  A second gradient pulse rephases the analyte resonances while 

further dephasing the solvent resonance. Although WATERGATE is a useful suppression 

technique for quantitation of exchangeable protons, the delays used in the composite 

pulse create “nulls” or regions of the spectrum that are not rephased by the second 

gradient pulse.  As a result, a flat excitation profile is not obtained and resonances in the 

regions around the nulls will be attenuated to varying degrees.  An additional 

disadvantage is that WATERGATE can have an adverse effect on strongly coupled spin 

systems, creating baseline distortions and hindering quantitation of these peaks.  An 

alternative approach, excitation sculpting, uses selective 180° pulses bracketed by 

gradients to dephase the solvent resonance while keeping the desired resonances in the 

detection plane.47  Excitation sculpting produces spectra with a flat baseline and gives a 

uniform excitation profile, giving it an advantage over other solvent suppression pulse 

sequences.  
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1.2.5 Baseline Correction and Background Subtraction 

A flat spectral baseline without phase distortions, rolling, and artifacts increases 

the reliability of quantitative data.   Baseline correction is a more significant problem in 

spectra measured on older instruments that use analog filters.  The digital receivers used 

in newer spectrometers eliminate the distortions produced by analog filters and also 

remove the imbalance between quadrature channels that can occur with analog 

receivers.48  Although the digital receivers used in newer instruments produce spectra 

with less baseline distortion, other factors can contribute to baseline problems in both 

instrument architectures.  One source of baseline distortion is the first order phase 

correction required to compensate for the dead time following the rf pulse and before data 

acquisition. While ideally data acquisition would begin immediately following the rf 

pulse, this would distort the intensity of the first points in the FID due to acoustic ringing 

in probe. In addition, once turned on, the receiver requires some time to produce a linear 

response.  Correction of the first points in the time domain can be achieved through 

backwards linear prediction to replace the corrupted data points. A common frequency 

domain correction method involves subtracting a polynomial from the spectrum to give a 

flattened baseline, but alternative methods such as cubic spline can also be applied. 

Baseline correction in the frequency domain requires large peak-free noise regions to 

define the baseline. An alternative approach to baseline correction in the frequency 

domain described by Xi and Rocke is based on a penalized parametric smoothing model 

that works especially well with the crowded spectra encountered in metabolomics 

experiments.49  



 15 

A high spectral background due to signal overlap with the broad resonances of 

proteins and lipids or the sharp peaks of metabolites, such as glucose, present at high 

abundance can interfere with the quantitation of analyte resonances.  Although several 

sample preparation methods allow for removal of classes of compounds (i.e., protein 

precipitation, solid-phase extraction, liquid/liquid extraction, etc.) these can also reduce 

the precision of the analysis, increase the experiment time and  sometimes lead to the 

analyte loss in the process of removing the targeted interferent.  Several spectroscopic 

methods have been developed as alternatives to address the problem of signal overlap.  

Spectral subtraction (or difference) is a technique in which a spectrum containing only 

the background is subtracted from that of the sample. 50 Ideally, the resulting spectrum 

will show only the resonances of interest; however, spectral subtraction can also result in 

signal loss, subtraction artifacts and baseline distortions that limit the quantitative 

information obtained from an NMR experiment.  Removal of high concentration analytes 

while maintaining the quantitative information provided by NMR would greatly increase 

the capabilities of NMR for biomarker detection.  For instance, in normal blood plasma 

or serum samples or in the urine of diabetic patients, glucose is present at high 

concentrations complicating the measurement of less abundant metabolites due to 

resonance overlap.51  To improve the suppression of the glucose peaks, Ye and coworkers 

developed a novel approach for compound-specific resonance removal, termed the “add 

to subtract” method.52  This method is in essence an NMR-specific version of the general 

method of standard addition and calls for the addition of glucose to roughly double its 

concentration in the sample with acquisition of identical spectra before and after spiking.  
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Using this method, iterative manual fitting within the Bruker Topspin 3.0 software 

permitted effective subtraction of the glucose resonances decreasing their intensity by 

98% while permitting visualization of resonances hidden under glucose. Comparison of 

the add to subtract method with normal spectral subtraction for urine and protein-

precipitated blood serum samples showed the advantages of this approach in producing a 

clean baseline free of distortions and enabling the quantitation of metabolite resonances 

otherwise obscured by the more intense glucose peaks.  

An alternative approach is the suppression of background resonances by taking 

advantage of differences in the NMR properties of analytes and those molecules that give 

rise to the background. The CPMG pulse sequence can be used to allow broad 

resonances, such as those produced by proteins, to decay through transverse (T2) 

relaxation, leaving only the resonances of small molecules with slower T2 relaxation rates 

to be detected.53, 54  There are disadvantages to the CPMG approach for metabolomics 

measurements including baseline and phase distortions as well as intensity losses due to 

the T2 relaxation of the analyte nuclei.  Lucas et al. proposed the use of the stimulated 

echo (STE) pulse sequence as an alternative to the CPMG experiment and demonstrated 

that STE spectra of blood serum had better phase and baseline character, providing 

greater reproducibility.55  Although the STE experiment is normally used for NMR 

diffusion measurements, the resonances of the slowly diffusing serum macromolecules 

were not selectively suppressed in the STE spectra through differences in diffusion, but 

rather by T2 relaxation during the gradient pulses and associated delays.  
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1.2.6 Analyte Derivatization  

 For complex samples, such as those of biofluids or tissue extracts, 1H NMR 

spectra even at high fields (i.e. > 500 MHz) suffer from problems of resonance overlap. 

One way of improving spectral resolution is through 2D HSQC experiments that correlate 

1H resonances with directly coupled 13C or 15N nuclei. These experiments detect 1H while 

benefitting from the greater chemical shift dispersion of the heteroatom.  To overcome 

the sensitivity limitations of natural abundance 13C and 15N experiments, chemical 

derivatization methods have been used to target specific functional groups and enhance 

the signals from lower abundance molecules not normally detectable by HSQC.  

Shanaiah and coworkers reported the acetylation of amines with 13C labeled acetic 

anhydride for the selective detection and identification of amino acids and related 

metabolites in human urine and serum in the 1H,13C HSQC spectra.56   Ye et al. expanded 

on this concept by adding a 15N label to carboxylate groups to detect the labeled 

metabolites in 1H,15N HSQC spectra, greatly improving spectra resolution as well as the 

quantitative capacity of the NMR measurements.57 Using selective 13C and/or 15N 

labeling, the coverage of targeted metabolic profiling experiments can be increased 

providing new insights into metabolic processes that might otherwise be undetectable. 

1.2.7 Integration, Deconvolution and Binning 

 The parameters and methods used for post-acquisition data analysis can have an 

enormous impact on the outcome of a metabolomics NMR experiment.58  Resonance 

integration or deconvolution is used for analyte quantitation or to generate the data inputs 

for metabolomics experiments.  Figure 1.2 illustrates the different approaches to  
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Figure 1.2.  Representative 600 MHz 1H NMR spectra showing the methyl resonances of 

20 mM valine and 5 mM isoleucine, a) with  integral regions manually defined for each 

resonance, b) after deconvolution with peak fitting, and c) using binned integral regions 

(shown in red).  Fitted data in panel b) is shown in blue and green for valine and 

isoleucine, respectively, with the residual discrepancy between the calculated and actual 

spectrum shown in red.  Peak fitting was performed using ACDlabs Spectrus Processor. 
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integration for a region of the 600 MHz 1H NMR spectrum containing the methyl 

resonances of valine and isoleucine.  As discussed in section 1.2.2, for any quantitative 

NMR measurement, it is important to have a flat baseline. For relative quantitation, a S/N 

greater than 10 is required, while absolute quantitation requires the S/N to be greater than 

100 for the resonances of interest.  The 13C satellites of the more abundant compounds 

can interfere with the analysis of lower abundance compounds due to overlap.59  Through 

application of a decoupling sequence on the carbon channel, those satellites can be 

eliminated and the impurities evaluated quantitatively.  Most simply, integration is 

performed by defining an integral region around the resonances of interest (Figure 1.2a). 

Integral regions should be chosen to minimize contributions from overlapped resonances, 

although in complex biological samples this may not be possible.60   

 Due to the Lorentzian character of NMR resonances, integrals can be adversely 

affected even if neighboring peaks are visually resolved, a problem that is exacerbated 

when one of the overlapped resonances is of much greater intensity.  For example, even 

in the simple mixture used for measurement of the spectra in Figure 1.2, the partial 

overlap of the isoleucine and valine doublets in the region between 0.97 and 1.01 ppm 

artificially increases the isoleucine integral value.   

Because of the complexity of a biofluid or tissue extract, resonance overlap can be 

a significant problem in defining integral regions.  A variety of spectral deconvolution 

approaches can be used to mathematically fit a Lorentzian or Gaussian peak shape to 

partially overlapped resonances, resulting in a “pure” extracted spectrum that can be used 

for quantitative analysis.58, 61, 62  Software for deconvolution is provided by the instrument 
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vendors and independent commercial platforms, such as ACDlabs Spectrus Processor 

(Advanced Chemistry Development, Inc. Toronto, CAN) and MestReNova (Santiago de 

Compostela, ES), are also available.  Depending on the question to be addressed, 

resonances can be selected for deconvolution within a small region or the full spectrum 

can be analyzed. The integrals of the extracted peaks can be treated as either individual 

resonances or combined with other extracted peaks from the same spin system.     Figure 

1.2b demonstrates the ability of deconvolution to resolve the overlapped isoleucine and 

valine resonances providing more accurate integrals. One of the disadvantages of peak 

fitting is the time and processing-intensive nature of the fitting algorithm.  MestReNova 

has recently developed a new algorithm, termed Global Spectral Deconvolution (GSD), 

which quickly fits resonances with a high degree of accuracy.  Unlike peak fitting, which 

typically requires a number of user defined parameters including the peak frequency and 

width, GSD inputs only require the user to select the desired resolution (for example, if a 

single resonance shows minor splitting due to coupling, should that resonance be split 

into two or treated as one), the number of fitting cycles (which influences the speed of the 

GSD analysis) and a signal cutoff (or threshold) to limit the number of resonances 

analyzed.  

Binning is another approach to integration.  While deconvolution seeks to resolve 

partially overlapped resonances, binning (or bucketing) decreases the spectral resolution 

by integrating regions of the spectra based on either equidistant bin widths (e.g. 0.02 or 

0.04 ppm) or other binning techniques as described below.  Binning is not useful for 

absolute quantitation, however it is widely used in metabolomics studies.  Figure 1.2c 
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shows the binned spectrum of the methyl resonances of valine and isoleucine.  Some bins 

include portions of the resonances of both compounds, resulting in a decrease in 

resolution. 

 A commonly encountered problem using biofluids or tissue extracts is that 

variations in sample ionic strength (i.e., salt content) and pH can complicate metabolite 

analysis by NMR.  Buffers are often used to minimize these effects, however, deviations 

in chemical shifts can still be observed.  Binning can accommodate subtle differences in 

chemical shifts, but sometimes the end of a bin might fall on the top of a peak, and if 

there are pH-induced frequency shifts, changes in the binned integrals could provide 

misleading information about metabolite changes.  Adaptive binning, a technique using a 

wavelet transform of the data, provides a means of spectral alignment to negate the 

effects of pH or ionic strength differences among the spectra being compared.63 This 

method creates a variable bin width dependent on the detected peaks to account for 

chemical shift changes within a set of resonances.  A disadvantage of this method is that 

it requires user-defined variable inputs and creates a reference spectrum for wavelet 

optimization, resulting in a loss of information.  Adaptive intelligent binning (AI-

Binning) builds upon the adaptive binning technique in that it requires less user input 

while still providing variable bin length to account for chemical shift differences between 

spectra.64  This method divides the spectra into successive bins based on the intensity 

values of the bin edge, essentially defining the bin widths based on local minima.   
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1.2.8 Data Normalization  

 Data normalization is an integral part of studies employing NMR quantitation of 

biological samples, accounting for differences in dilution (a common problem with urine 

samples), extraction efficiency, pipetting errors, receiver gain, and water content.  Where 

the extraction efficiency can be reliably determined or sample dilution is not a problem, 

integrals can be normalized to the tissue dry weight or biofluid volume, respectively. In 

other cases, a method such as sum-normalization, which accounts for concentration 

differences by summing the area of the full spectrum, may be useful. In sum- or bucket-

normalization the NMR spectrum is divided into bins (removing solvent and contaminant 

signals), the bins are summed, and each individual integral is divided by the summed 

value.65  However, sum-normalization has been criticized because it assumes that the 

relative abundance of compounds, and therefore the resonances they produce, is similar 

across sample groups.  For example, glucose levels in diabetic patients can vary 

significantly and in some samples may be present at high levels, causing glucose to 

weight the sum-normalization factor in a highly variable fashion.  To compensate for this 

limitation, other normalization techniques have been developed.  In probabilistic quotient 

normalization (PQN), individual spectra are compared to a reference spectrum (normally 

a control spectrum or average of several spectra) by taking the quotient of the bins.66  The 

median of the quotients is then chosen as the normalization factor, and all variables of the 

spectra are divided by that quotient.  PQN is an effective method for normalization 

shown to be robust in a variety of studies. 
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1.3 Mass Spectrometry for Metabolomics Experiments 

Despite the advantages of NMR for metabolomics experiments, the greater 

sensitivity of hyphenated-MS techniques can allow the quantitation of less abundant 

metabolites.67  Because of the complexity of metabolite extracts, a separation is typically 

incorporated into the analysis prior to MS detection.  Popular chromatographic 

approaches prior to MS detection include gas chromatography (GC) and liquid 

chromatography (LC); however, the analytical platform chosen is largely dependent on 

the goal of the experiment. 

1.3.1 Gas Chromatography-Mass Spectrometry for Metabolomics 

GC-MS using electron ionization (GC-EI-MS) is a popular analytical platform for 

metabolomics studies due to its sensitivity and reproducibility as methods are readily 

transferable between labs and instruments.  The application of GC-MS for the 

identification of metabolites has been reported as early as 1967 however, its popularity 

and use for general metabolite profiling has increased significantly in the last 15 years.68, 

69  For example, GC-MS metabolite profiling has been used in urine analysis,70 the 

analysis of mice brain tissue,71 blood serum,72 and plant tissue.12   The robustness of GC-

MS measurements has largely been facilitated by the adoption of uniform MS parameters 

affecting fragmentation and through the use of retention indices (RI) that minimize 

discrepancies in the chromatography.73, 74  The inclusion of metabolite fragmentation 

patterns and retention index information into publicly available libraries has increased the 

utility of GC-MS for metabolomics studies of complex biological organisms.75, 76  GC-

MS has been successfully used to query plants, fungi, mammals, fish, and amphibians for 
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their metabolic response to a variety of biotic and abiotic stressors.11  GC-MS is 

particularly effective in the analysis of primary metabolites, specifically those involved in 

central carbon metabolism.  To circumvent the low volatility of most biological 

compounds, prior to GC-MS analysis molecules are silylated and sugar cyclization is 

reduced through methoximation of ketones and aldehydes.11  Because of extensive prior 

analytical method development, GC-MS is a popular and reliable analytical platform for 

the sensitive detection of a wide variety of metabolite classes.  However not all molecules 

are amenable to derivatization and, once derivatized, some analytes are not sufficiently 

volatile or stable for GC separations.   

Despite the inclusion of a separation prior to detection, peak overlap still occurs 

and can complicate chromatographic interpretation and metabolite identification.  There 

are several available programs used for deconvolution, the most widely of which is the 

Automated Mass Spectral Deconvolution and Identification System (AMDIS).77  The 

AMDIS program is freely available and can be coupled to a variety of libraries for peak 

identification.  In a two-step process, AMDIS first deconvolves the chromatogram of EI-

MS data and then performs a library search of each deconvoluted peak.  If RI markers are 

used, the AMDIS program also calculates the RI for the extracted peak, enabling 

identification not only by fragmentation patterns but retention indices as well. 

1.3.2 High Performance Liquid Chromatography - Mass Spectrometry for Metabolomics 

 High Performance Liquid chromatography-mass spectrometry (HPLC-MS) is 

more commonly used for targeted metabolite profiling of secondary metabolism, such as 

phenolic compounds78 and sugar phosphates.79  It is often the preferred tool for 
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pharmacological studies,80 and for the identification of biomarkers to aid in disease 

detection because of the wide selection of stationary phases available with selectivities 

for different classes of compounds.81 Additionally, HPLC-MS can be hyphenated with 

NMR to assist with component identification, although such instruments are not widely 

available.82  Electrospray ionization (ESI) is typically used for HPLC-MS metabolite 

analysis.  The advantage of ESI ionization is that it is a soft ionization source that results 

in minimal fragmentation, allowing the analyte of interest to be observed as a molecular 

ion peak.  In some cases, however, fragmentation can occur even under optimized 

conditions and salt adducts are not uncommon, complicating spectral interpretation. 

One reason that HPLC-MS is popular is that it is a very versatile method for 

bioanalysis.  Different types of LC separations can be used to resolve a wide range of 

compound classes, providing that the mobile phase is MS compatible.  Unlike GC-MS, 

HPLC-MS can be used to analyze both hydrophilic and hydrophobic compounds without 

derivatization by changing the mobile or stationary phases. HPLC separations are 

performed at lower temperatures than are required in GC, avoiding decomposition of 

thermally unstable compounds.82  HPLC-MS, however, is more susceptible to matrix 

effects compared with GC-MS, such as sample pH and salt content, contributing to 

variation in observed retention times for given analytes between chromatographic 

analyses.  Matrix effect can be mitigated by increasing sample preparation methods, such 

as liquid-liquid extraction, however the potential for sample loss increases with each 

additional preparation step.83   
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Hydrophilic interaction chromatography (HILIC) has been used to separate polar 

small molecules in metabolite extracts.84, 85  The HILIC separation mechanism is 

primarily due to partitioning of the analyte between a water layer adsorbed on the 

stationary phase surface and the organic mobile phase.86  As the aqueous composition of 

the mobile phase increases, the analyte will partition from the adsorbed layer of water 

into the mobile phase.87  Aspects of this mechanism are still not well-understood, and 

additional experimental evidence will be required to fully explain the HILIC separation 

mechanism.84  The advantage of HILIC is that it can separate highly charged hydrophilic 

analytes and is MS-friendly.87  The drawbacks of HILIC are its susceptibility to matrix 

effects due to ionic interactions with the stationary phase and the analytes, the low flow 

rate which reduces sample throughput, and long equilibration period required prior to 

each injection.85  

Reverse-phase high pressure liquid chromatography (RP-HPLC), the most widely 

applied separation method for LC-MS, resolves analytes based on differences in their 

interactions with a hydrophobic stationary phase.  RP-HPLC is a popular method because 

the separations are reproducible and predictable.  The nature of the interactions of 

analytes with RP stationary phases have been discussed extensively and elution order can 

often be anticipated, with analyte retention generally increasing with hydrophobicity.88  

Because RP-HPLC retains non-polar compounds, polar compounds elute early in the 

separation or are not retained at all, preventing their resolution.  Glauser and coworkers 

demonstrated the utility of RP-HPLC-MS, combined with NMR, to separate and identify 

stress biomarkers in Arabidopsis thaliana.89  They showed the transferability and 
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reproducibility of RP-HPLC separation from an analytical separation to a semi-

preparative separation, enabling efficient component resolution simultaneously with MS 

detection.   

Reverse-phase ion-pair high pressure liquid chromatography (RPIP-HPLC) is a 

separation approach that uses standard reverse-phase columns with a mobile phase 

containing an ion pairing reagent (IPR) in the separation buffer. The IPR, such as 

tributylamine, contains both lipophilic and charged moieties.  Due to the ion-pairing 

interaction, charged analytes (independent of hydrophilicity) can be retained on a 

reversed-phase column.  An alternative method to RPIP-HPLC is strong-anion exchange 

(SAX) HPLC, in which charged analytes are bound by the oppositely charged stationary 

phase and a salt gradient is used for elution.  The high salt concentration required to elute 

analytes from the SAX column is not compatible with MS detection.  In contrast to SAX-

HPLC, RPIP-HPLC uses volatile MS-compatible ion-pairing reagents in the mobile 

phase.   

Figure 1.3 shows the two currently accepted mechanisms of RPIP-HPLC 

separations. As illustrated in Figure 1.3a, adsorption of the IPR onto the stationary phase 

separates analytes through a pseudo-ion exchange mechanism.90   In the mechanism 

shown in Figure 1.3b, the IPR and the charged analyte form an ion pair in solution that 

partitions onto the hydrophobic stationary phase.90, 91  It is likely that both mechanisms 

occur in most RPIP-HPLC separations and that the balance between these competing 

processes is influenced by experimental conditions.92 As a result, RPIP separations 

methods tend to be less robust than RP-HPLC separations. Extensive method  
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Figure 1.3. The RPIP separation mechanisms illustrated with trehalose-6-phosphate as 

the analyte and dibutylamine as the IPR.   (a) The dynamic exchange model for RPIP in 

which the IPR coats the stationary phase and acts by an anion-exchange mechanism to 

retain oppositely charged ions.90  (b) The formation of an ion-pair in solution allows 

analyte retention through the interaction of the lipophilic side chains of the IPR with the 

stationary phase.91 
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optimization is often required for each new analyte targeted, and may even be necessary 

when extending the separation to a new sample matrix. Although RPIP-HPLC has been 

less commonly reported in metabolomics experiments, there is growing interest in its 

application for the separation of phosphorylated and other anionic compounds.93, 94  

1.3.3 Considerations for Mass Spectrometry-based Metabolomics Experiments 

As with NMR, there are several factors that require consideration when 

performing MS-based metabolomics experiments.  One factor is the type of mass 

analyzer used as each has different attributes in terms of mass accuracy, sensitivity, 

reliability for quantitation, cost and ease of use.  Data analysis (including data alignment, 

integration, and quantitation) is another consideration. There are a wide variety of 

software tools to assist in data mining and the different approaches of each program can 

impact the analysis results.  

1.3.3.1 Mass Analyzers 

The choice of mass analyzer is an integral part of an MS-based metabolomics 

experiment. There are a variety of mass analyzers that can be used for the detection, 

identification, and quantitation of metabolites each with their own advantages and 

disadvantages.  Two of the main challenges in metabolomics experiments are metabolite 

identification and achieving sufficient measurement sensitivity to reliably quantify 

compound present at low abundance.  Many metabolites found in trace amounts hold 

important biological functions95 and not all mass spectrometers are equally sensitive.  

Although other types of mass spectrometers have been employed for metabolite 



 30 

identification and quantitation, the most widely used mass analyzers are the quadrupole 

mass filter and the time-of-flight mass spectrometer (TOF-MS).   

Quadrupole instruments are well-suited for the detection and quantitation of trace 

quantities since they are able to detect sub-picomolar amounts of a compound.96  

Quadrupole instruments also have a dynamic range of approximately 6 orders of 

magnitude, comparable to that of NMR, allowing a wide range of concentrations to be 

analyzed without risk of detector saturation.96  Additionally, several quadrupoles can be 

operated in tandem, allowing mass-selective isolation, fragmentation, and detection to 

facilitate compound identification.  A disadvantage is that the mass accuracy of the 

quadrupole mass analyzer is inherently low, typically only allowing unit resolution 

thereby limiting compound identification supported by the m/z ratio.97   

In contrast, the TOF instrument can obtain a high mass accuracy, down to 1 ppm 

(or better, depending on the instrument) allowing a more accurate assignment of 

empirical formula to the detected m/z.  Additionally, TOF instruments can be linked with 

a quadrupole (Q-TOF), allowing MS/MS in addition to high mass accuracy 

measurements to further facilitate compound identification.  However, TOF instruments 

are limited to a dynamic range of 104 at best and are not as sensitive as their quadrupole 

counterparts.  Because of the differences between instrumentation, metabolomics 

experiments must be designed to account for the merits inherent in each analyzer. 

However, as in the discussion of high field NMR, practical limitations may dictate that 

the experimenter matches his/her analyses to the locally available instrumentation and a 

choice of mass analyzer based solely on figures of merit may not be realistic.  
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1.3.3.2 Quantitation with Mass Spectrometry 

 As with NMR, quantitation in MS-based metabolomics experiments is either 

performed relatively or to determine absolute quantities.  For relative quantitation, the 

peak areas in the extracted ion chromatograms are compared across samples to reveal 

differences as a function of treatment.  Normalization for relative quantitation can be 

carried out by summing the areas of identified peaks corresponding to each metabolite 

and dividing this value by that sum of the areas for all metabolites (similar to sum 

normalization described in section 1.2.8).  Normalization can reduce the contribution of 

differences due to dilution, however like for NMR,  changes in the most abundant signals 

can bias the results.  Another common problem with MS measurements is the potential 

for changes in sensitivity over the course of several injections.  An internal surrogate, an 

analyte that is otherwise not found in the sample analyzed, can be added to compensate 

for changes in ionization efficiency.  The effect of changes in ionization during 

metabolomics experiments can also be mitigated through randomization of the sample 

order so that samples from different replicates are not measured sequentially but 

intermixed throughout the run.     

Absolute quantitation in mass spectrometry is more complicated to carry out 

effectively, especially in metabolomics experiments due to their goal of simultaneously 

determining the levels of many compounds.  Because ionization is compound-specific for 

all ionization sources, quantitation is accomplished through creation of a calibration 

curve, using the method of standard additions, or by addition of an isotopically labeled  



 32 

 
Figure 1.4.  (a) Analyte quantitation by an external calibration curve.  The equation of 

the best fit line can be used to calculate the concentration of the analyte using the 

response measured for the sample.  (b) A standard addition calibration curve generated by 

adding known amounts of the analyte to the sample.  The concentration of the analyte in 

the sample is determined by the x-axis intercept.  (c) For quantitation by isotope dilution, 

a known amount of an isotopically labeled analogue of the analyte of interest is added to 

the sample and the analyte and standard peaks are resolved due to differences in m/z.  
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analogue of the targeted analyte.97  Figure 1.4 illustrates three different calibration 

methods for absolute quantitation. 

 External standardization is carried out using a calibration plot generated using a 

standard solution of the targeted analyte (Figure 1.4a). The equation generated by a best 

fit function of the calibration plot is used to determine the concentration of analyte in a 

sample from the detected response.  Although the calibration plot may be best fit by a 

nonlinear function, often only the linear region of the calibration curve is used for 

quantitation.97  MS calibration using external standards works well with relatively simple 

samples; however, matrix effects from complex biological samples can dramatically 

affect ionization efficiency reducing the accuracy of the determination.  Another problem 

with external standardization is that changes in ionization efficiency over the course of 

the experiment can mean that samples analyzed at the end of the experiment may give a 

lower response than those determined at the start of the run. This limitation is commonly 

addressed by interleaving a standard with the sample queue, for example by re-measuring 

a standard after every 9 sample injections to compensate for instrument drift.   

The method of standard additions overcomes the limitation of external 

standardization by performing the calibration in the sample matrix (Figure 1.4b).98   In 

this method, the sample is analyzed and then successive aliquots of an analyte standard at 

known concentration are added to the sample with the measurement repeated following 

each addition. The instrument response is plotted vs. the concentrations of the added 

standard and the resulting plot fit by linear regression. The x-intercept of the calibration 

plot indicates the concentration of the analyte in the original sample.  However, because 



 34 

standard addition is used to compensate for matrix effects, a plot must be generated for 

each sample separately for each analyte of interest making this technique impractical for 

many metabolomics experiments.   

Isotope dilution is a favored alternative for MS quantitation in which a known 

amount of an isotopically labeled analog of the compound of interest is added to the 

sample (Figure 1.4c).99  Isotope dilution is a special case of the method of standard 

addition that avoids the need to perform multiple analyses of the sample because the 

analyte and standard can be discriminated based on differences in m/z. For example, 

glucose uniformly enriched in 13C ([U-13C]-glucose) and having an observed m/z six 

Daltons higher than the naturally abundant [U-12C]-glucose might be used for MS 

quantification of glucose. This mass difference is sufficient to permit resolution and 

integration of both glucose analogs in the resulting mass spectrum allowing 

quantification of the glucose concentration based on the ratio of peak areas. In an LC- or 

GC-MS experiment, because both the analyte of interest and the isotopically labeled 

analog are chemically equivalent, they will have the same chromatographic retention time 

and will experience identical ionization conditions.    Isotopically labeled versions of 

many metabolically interesting compounds are commercially available but are not 

available for all metabolites and a labeled analog of each analyte of interest must be 

added to every sample making this approach costly. 

1.3.3.3 Data Extraction for Integration 

 Compared with NMR spectra, data extraction in a GC- or LC-MS experiment is 

less complex.  Although chromatograms may themselves be complex with significant 
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peak overlap, it is the mass spectral data, not the total ion chromatogram (TIC) that is 

used for data extraction.  Most metabolites produce a molecular ion with unique mass-to-

charge ratio (m/z), although there are prominent exceptions including sugars and isomeric 

phenolic compounds.  For ESI, a soft ionization source commonly used in LC-MS, the 

resulting mass spectra ideally contain only one m/z ratio for the molecular ion of each 

analyte, however, in-source fragmentation and adduct formation commonly occur 

complicating the analyses.  Spectra obtained with other ionization methods can be even 

more complex. For EI, a hard ionization source commonly used in GC-MS, the mass 

spectral data is typically a series of m/z values representative of characteristic fragments 

and the molecular ion peak may be of very low intensity, or even be undetectable above 

the spectral noise. In such spectra, quantitation may be carried out using the base peak 

(the most intense mass spectral peak) or using several characteristic fragments.  

Regardless of the ionization source employed, data extraction in MS-based 

metabolomics experiments is performed by plotting each m/z value present in the spectra 

as a function of time creating individual extracted ion chromatograms (XIC).   Because of 

the chemical complexity of the metabolome, there may be several chromatographic peaks 

for each m/z value selected, each representing a distinct metabolite.  Each peak is 

assigned a chromatographic retention time, and is subsequently identified as a mass-

retention time pair to better facilitate identification.  The peaks are integrated and an area 

is assigned to the mass-retention time pair.  Although this process can be performed 

manually, for large data sets several computer programs are available that automatically 

extract individual components including XCMS,100 MarkerLynx (Waters Corporation,  
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Figure 1.5.  A schematic showing the isolation of an analyte by solid-phase extraction 

(SPE).  Following cartridge-specific washing steps, the sample containing the analyte of 

interest (red circles) and other components (green and blue circles) is loaded into the 

cartridge.  A washing step removes poorly retained matrix components as waste while the 

analyte is retained on the cartridge.  The analyte is subsequently eluted from the cartridge 

and collected for analysis. 
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Milford, MA), Mass Hunter (Agilent Technologies, Santa Clara, CA) and 

MetaboAnalyst.101   Additionally, each of these software packages automatically baseline 

correct and align peaks between data sets to simplify data processing. 

1.4 Solid-phase Extraction for Sample Preparation 

Solid-phase extraction (SPE) is a useful technique for sample clean-up or 

isolation of a desired class of molecules with similar structures or properties.102  Figure 

1.5 shows a general workflow utilizing SPE for the isolation of a targeted analyte.103  A 

cartridge with a specific affinity for a class of compounds or type of structures is chosen.   

Prior to loading the sample the cartridge is prepared by washing to remove process 

impurities and stabilizers and to leave it in a form that will best retain the analytes of 

interest. As shown in Figure 1.5, the sample is first loaded onto the cartridge and 

components that are not retained by the solid phase are removed in the wash step.  The 

compounds retaining on the cartridge are then eluted. Typically the eluent contains the 

analytes of interest as well as additional matrix components having similar physico-

chemical characteristics.    

The availability of several different SPE stationary phases including weak/strong 

anion exchange (WAX/SAX), weak/strong cation exchange (WCX/SCX), reverse-phase 

C18, and hydrophilic-lipophilic balanced (HLB) materials provide the possibility of 

isolating and separating diverse classes of compounds.  For example, Beretta and 

coworkers applied reverse-phase SPE-NMR for the identification of the botanical origin 

of honey.6  Application of SPE allowed the isolation of hydrophobic markers that could 

be used for the identification of the type of honey and any contaminants that might be 
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present.  Another recent example of SPE-NMR includes the enrichment of phenolic 

compounds from grape extracts during various grape berry development stages.104  

Rolcik and coworkers used C18-SPE prior to GC-MS analysis to purify indole-3-acetic 

acid, a common plant metabolite to increase the sensitivity and selectivity of GC-MS 

analysis for phytohormones.105 Bruce and coworkers used HLB cartridges and LC-MS 

analysis to develop a high throughput quantitative method for determining vitamin D 

metabolites in serum.106   Similarly, Delatte and coworkers used a WAX SPE cartridge 

built on an HLB packing material and subsequent LC-MS analysis to target the isolation 

of phosphorylated disaccharides in plant materials, including trehalose-6-phosphate.79  

These examples demonstrate that SPE cleanup/isolation has a wide range of applications, 

can be used with a variety of sample matrices and is compatible with all major analytical 

platforms used for metabolomics measurements. 

Analyte recovery after SPE is not always 100%.103, 107 Analyte recovery can be 

reduced by incomplete retention, analyte loss during the washing step, or by failure to 

completely elute the analyte from the SPE cartridge.  Because the sample matrix can 

influence recovery, samples that have been spiked with a known amount of an analyte 

standard are typically used in the determination of recoveries.  This matrix almost always 

contains background levels of the analyte of interest therefore addition of an isotopically 

labeled analog allows the determination of recovery using LC- or GC-MS, as described in 

section 1.4.  As the labeled analog and the target analyte are chemically equivalent, they 

will be affected similarly during SPE.  In addition to matrix effects, the flow rate during 

the loading, washing, and elution steps can also influence analyte recovery.  A 
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sufficiently slow flow rate should be used to allow the analyte enough time to interact 

with the cartridge stationary phase during loading and likewise, interact with the mobile 

phase during elution. 

1.5 Multi-Platform Analyses for Compound Identification and Characterization 

 Online HPLC-UV/PDA-SPE-NMR-MS (or -MS-NMR) allows for the 

identification and detection of metabolites using multiple detection platforms in a single 

experiment.  Hyphenation of NMR and MS can be valuable in evaluating a plant’s 

metabolome due to the complementary nature of the data produced by each technique.  

The sensitivity of MS analysis enables the detection of low concentration analytes and 

provides some structural information about the identity. NMR can be especially 

informative in the identification of metabolites that are otherwise unknown or only 

putatively assigned.  For example, Exarchou and coworkers demonstrated that online 

HPLC-UV-SPE-NMR-MS is capable of identifying flavonoids in Greek oregano.108  This 

was possible by first performing a separation using HPLC with protonated solvents and 

then splitting 5% of the peak for MS analysis with 95% directed to UV-SPE-NMR.  Prior 

to NMR analysis, peaks were trapped on SPE cartridges, dried, and eluted with 

deuterated solvents.  SPE provided a method for online concentration of the sample for 

NMR detection along with exchange of the protonated solvent used in the separation with 

the more expensive deuterated solvent for 1H NMR spectral acquisition.  Peaks were 

trapped multiple times on the SPE cartridge prior to elution to increase the concentration 

of the analyte prior to NMR analysis.  To ensure a higher recovery rate, the analytes were 

automatically diluted with water after elution from the HPLC column to decrease the 
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organic mobile phase composition and encourage efficient SPE trapping.  Agnolet and 

coworkers compared online HPLC-PDA-MS-SPE-NMR with traditional 1H-NMR 

metabolite profiling for the evaluation of commercial Gingko biloba extracts.109  The 

purpose of these experiments was to evaluate 1H NMR as a replacement for MS for the 

analysis of glycosides and terpene trilactones (TTLs) in Ginkgo biloba.  Using HPLC-

PDA-MS-SPE-NMR, the authors were able to identify and characterize the composition 

of several unique glycosides and TTLs in commercial extracts and validate 1H NMR for 

global profiling of extracts for quality control purposes.  Additionally, these techniques 

allowed the identification of potentially harmful components of the commercial extracts.  

The disadvantage of online methods is that the differences in analyte concentration 

required for MS and NMR analysis may be difficult to control.  A fully hyphenated 

method requires that the NMR spectrum of the analyte of interest be acquired online, 

limiting the number of scans and subsequently, the quality of the spectrum obtained.110  

HPLC-MS-NMR analysis can also be completed offline, enabling the isolation of 

selected analytes followed by a concentration step for NMR analysis.  Rezzi and 

coworkers demonstrated an automated SPE-HPLC fractionation method for biofluids 

followed by NMR analysis.111  Although MS detection was not employed, it can be 

implemented afterwards for offline sample analysis, taking advantage of the inherently 

non-destructive nature of NMR in combination with the sensitivity of MS. 

 Multi-platform approaches should be considered in the design of plant 

metabolomics experiments as they have shown to be advantageous for sample 

enrichment, component identification, and method verification.   The combination of 
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HPLC, MS, SPE, and NMR allowed researchers to simultaneously reduce sample 

complexity, identify contaminants, target specific classes of compounds and evaluate 

biological diversity quantitatively using a single analysis.  Because of the complexity of 

plant systems and the large number of predicted metabolites, further development and 

application of hyphenated HPLC-MS-NMR techniques will be beneficial for future plant 

metabolomics studies.  

1.6 Statistical and Chemometric Analysis of Metabolomics Datasets 

 Statistical analysis is important to ensure appropriate representation of 

quantitative data especially when relative quantitation is performed for a large dataset.  

Several different statistical methods are available for the evaluation of metabolomics 

data.  For comparison of the integrated areas of individual peaks (univariate analysis), 

common statistical analysis methods can be applied, such as the Student’s t-test and p-

value calculations, analysis of variance (ANOVA), and regression analysis.  These 

techniques are described in a variety of textbooks and articles and will not be discussed 

here.112, 98, 113, 114  The focus of this section is on multivariate data analysis for evaluating 

global changes in a set of NMR or MS spectra.  Multivariate data analysis is widely used 

in metabolomics studies and for evaluating the results of method development 

experiments.115, 10  There are numerous types of multivariate analysis methods that can be 

applied to quantitative datasets, however only a few of the more relevant techniques will 

be discussed in this section.  The review by Broadhurst and coworkers provides an in-

depth analysis and description of many statistical approaches including their advantages 

and disadvantages.116   
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1.6.1 Principal Components Analysis for Metabolomics 

Principal components analysis (PCA) is a multivariate statistical method that has 

the advantage of being an unsupervised technique, meaning the analysis is completed 

independent of variable identification.117  PCA identifies statistical patterns within a 

dataset, independent of the experimental conditions (such as genotype, stress, drug dose, 

subject weight, diet, gender, etc.), making correlations that can later be attributed by the 

researcher to specific experimental conditions or sample classes.  For PCA of NMR data, 

spectra are compiled into a data table containing intensity (either as integral bins or 

individual data points) as a function of chemical shift for each sample.  For PCA of MS 

data, the XICs are compiled into a data table containing the area of each mass-retention 

time pair. In PCA of GC-MS analysis, only the mass-retention time pairs of known 

metabolites are used to avoid inclusion of derivatization side products.  

The multidimensional NMR or MS data matrix is reduced by PCA to a lower 

dimensional space based on 2 or more orthogonal principal components, which depend 

on the sample variance.  Although statistical significance cannot be deduced based on the 

relationship between sample groups in a PCA plot (if indeed the different sample classes, 

treatments, conditions, etc. group differently than the controls), such groupings do 

provide insight into the statistical differences between samples (Figure 1.6). If there are 

large differences between sample groups in the PCA scores plot, several of the variables 

(or bins) likely contain resonances that vary significantly; therefore, sample classes that 

demonstrate clearly resolved groupings will likely also be distinguished by univariate 

comparisons of selected peak integrals.  Figure 1.6 shows an example of PCA scores  
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Figure 1.6.  An example of PCA performed on an NMR metabolomics dataset showing 

the (a) scores and (b) loadings plots.  The various symbols in the scores plot (a) represent 

the 10 individual treatments, with five samples from each treatment analyzed. Consistent 

sample groupings within a treatment are highlighted by ellipses.  The samples that do not 

group separately are enclosed by a rectangle.  The numbers in the loadings plot (b) are 

the different NMR bins that are responsible for the separation of the different treatments 

in (a).  
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(1.6a) and loadings (1.6b) plots for an NMR metabolomics dataset.  The symbols in the 

scores plot represent replicate analyses of samples from 10 different treatments, 

distinguished using a different symbol for each treatment. Distinct sample groupings are 

highlighted by ellipses, show clear separation of samples from several of the treatments 

along principal component one (PC1) and principal component two (PC2). However, not 

all of the treatments produced results that group separately and these are highlighted with 

rectangles.  The loadings plot (Figure 1.6b) shows which variables (in this case data bins) 

contribute to the separation along PC1 or PC2, identifying the metabolites that contribute 

most to the sample groupings in the scores plot (Figure 1.6a). In the example data set 

shown in Figure 1.6, PC1 and PC2 describe 65 % and 17% of the variance, respectively. 

If the first two principal components do not explain a majority of the variance (for 

example, if PC1, PC2, and PC3 account for 20%, 18%, and 16%, respectively), then 

other principal components will need to evaluated. 

1.6.2  Other Statistical Approaches for the Analysis of Metabolomics Data 

 Orthogonal projections to latent structures discriminate analysis (O-PLS-DA), 

also known as partial least squares, is another multivariate analysis technique used in the 

analysis of biological datasets.118, 113, 119  This is a supervised classification model that 

differs from PCA by addition of grouping variables that indicate in which class the 

samples belong.  As in PCA, if the data originated from NMR analysis, the data input is a 

table of binned integrals (or the intensity of individual data points) as a function of 

chemical shift.  If MS data is to be analyzed, the input is mass-retention time pairs and 

the corresponding areas.  PLS reveals the relationship between the original data matrix 
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and the representation generated by the analysis, providing information on how the 

different sample sets can be described based on the grouping information provided.  As 

with PCA, definitive statistical correlations between the sample classes can only be 

loosely interpreted from the PLS results.  Problems with over fitting, where too many 

variables are used for too few samples (as often the case in metabolomics), additionally 

complicate PLS interpretation.112, 114, 120  To overcome this limitation, cross-validation is 

becoming more common for PLS measurements.120  For a more in-depth description, 

several reviews and articles discussing advantages and disadvantages of PLS, describe 

different variations of PLS, and the types of datasets for which PLS is most applicable.112, 

114, 120    

  Statistical total correlation spectroscopy (STOCSY), a pseudo-2D NMR plot, 

compares the intensities of resonances to generate correlations between these 

resonances.121  The main advantage of STOCSY is the generation of a pseudo 2D NMR 

spectrum based on the statistical correlation of a specific resonance, allowing facile 

identification of resonances that differ between sample classes.  Not only does STOCSY 

provide a measure of the statistical differences between resonances it also indicates the 

magnitude of the change, revealing either negative or positive correlations corresponding 

to an increase or decrease in the relative levels of a particular metabolite.  Because the 

STOCSY plot serves as a visual aid for identifying resonances that differ between sample 

classes, an additional level of correlation between resonances can be elucidated.  

Resonances demonstrating similar statistical differences can be interpreted as arising 

from the same molecule or from molecules of related pathways.  STOCSY has been 
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applied to a variety of organisms and has been adapted to include additional 

chemometrics.122-124 

1.7 Isotope Enrichment and Metabolic Flux 

 One of the advantages of NMR spectroscopy is the ability to detect a variety of 

biologically important nuclei, such as 1H, 13C 15N, and 31P.  Similarly, MS analysis 

provides isotope-specific information enabling the evaluation of a variety of nuclei 

through their isotopic distribution.  Stable isotope labeling of molecules (such as drugs, 

sugars, metabolic precursors, etc.) with 13C or 15N can be a useful tool for elucidating 

specific biochemical reactions to stresses, genetic differences, toxicants and 

pharmaceuticals.  Quantitative evaluation of compounds before, during, and after 

metabolism is of growing interest.  Twaddle and coworkers used deuterated bisphenol A 

in rats to track and quantify its various metabolites by LC-MS in tissues, fluids, and 

excreta, enabling researchers to evaluate concentration affects.125   Fluorine (19F) NMR is 

also often utilized for pharmacokinetic studies due to its high sensitivity and low natural 

background, making fluorine-labeled pharmaceuticals easier to track throughout their 

adsorption and eventual catabolism.  Recently, Do and coworkers reported the use of 19F 

for reaction monitoring and yield determinations for pharmaceutical development, taking 

advantage of the non-destructive, and inherently quantitative nature of NMR.126  Other 

studies using fluorine analysis include in vivo magnetic resonance studies of psychiatric 

drugs and high throughput NMR for identification of enzyme inhibitors.127, 128  

Metabolic flux analysis uses compounds with radioactive or stable isotope labels 

to determine the flow of metabolites through biochemical pathways.129  Plant and cell-



 47 

based studies have demonstrated the utility of specifically labeling nutrients for metabolic 

flux analysis. Using NMR for isotopomer analysis, the metabolism of labeled materials 

provides insights into the biochemical regulation by following the extent of incorporation 

the stable isotope labels as well as their position within the metabolites.  Lane and 

coworkers demonstrated the utility of isotopomer analysis in cell culture through 

introduction of [U-13C]-glucose and tracing the positional enrichment of 13C isotopes in 

glycerophospholipids.130 Similarly, isotopomer analysis was conducted by GC-MS on 

metabolites resulting from usnic acid, a suspected hepatotoxin found in lichen-derived 

food supplements used for weight loss.131  NMR has also been used to discern the 

assimilation preferences for CO2 in two plant species in high and low CO2 atmospheres. 

Biochemical pathways were identified through labeled 13CO2 using solid state NMR and 

steady state metabolic flux experiments.132   

1.7.1 Increasing the Sensitivity of NMR 

For most compounds NMR suffers from poorer sensitivity than can be obtained 

with MS detection, limiting its application in metabolic flux experiments.  Although it 

requires specialized instrumentation that is not yet universally available, dynamic nuclear 

polarization (DNP), greatly enhances NMR sensitivity making this method especially 

valuable for metabolic flux experiments.  DNP increases the sensitivity of NMR by as 

much as six orders of magnitude by transferring electron spin polarization to nuclear spin 

polarization.133 Once the compound is transferred from the DNP magnet to the NMR 

instrument, the analyte nuclei quickly relax back to their equilibrium populations. 

Because of the limited polarization lifetimes (seconds to minutes), in vivo metabolic flux 
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experiments using DNP must be performed quickly so that substrate uptake and 

conversion occur before the polarization is lost.  These limitations suggest DNP to be 

useful primarily for relative quantitation, however recent reports comparing LC-MS 

analysis and DNP for drug metabolism indicate DNP can be absolutely quantitative.134   

Meier et al. reported a DNP experiment using uniformly labeled 13C and 2H glucose in a 

yeast cell culture.135  These experiments showed central carbon metabolism regulation as 

a result of nutritional changes, chemical treatment, and a comparison between E. coli and 

yeast metabolic profiles.   

1.8 Application of Metabolomics for Understanding Crop Stress Responses 

The genetic manipulation of crop plants to improve agronomic traits by use of 

breeding or transformation technology is routine and large amounts of seed can be easily 

generated for storage and distribution from accessible seed banks.136, 137  The genetic 

variation underlying trait differences can be interrogated to provide information specific 

to biochemical pathways and the combination of this information with the results of 

metabolomics experiments can together give a deeper understanding of systems biology. 

Arbona and Steinfath have recently demonstrated the utility of metabolomics for 

phenotyping plant materials of closely related genotypes138 and genotypes grown under 

different agriculturally relevant conditions.139  The results of these studies indicate the 

sensitivity of the plant metabolome to differences in environment, subtle genotypic 

differences, and agricultural stress.   

 Flooding, a form of abiotic stress, is a common natural disaster that has a 

significant impact on crop production, survival, and quality.140  Rice, an important staple 
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food crop, is frequently affected by short-term deep flooding especially in regions in 

South and Southeast Asia, reducing crop yields, increasing the financial burden of 

farmers and decreasing the food supply.  The identification of the SUB1A gene of the ca. 

125 kB multigenic SUBMERGENCE 1 (SUB1) locus on chromosome 9 as a determinant 

of enhanced submergence tolerance in rice has led to breeding of popular varieties 

capable of enduring complete submergence for two weeks or even longer.141  Such 

breeding efforts produced the variety, Oryza sativa ssp. japonica cv. M202(Sub1), with a 

higher tolerance to deep floods compared to Oryza sativa ssp. japonica cv. M202, a 

variety grown commercially.141  The increased submergence tolerance of Sub1 rice lines 

allows these plants to maintain high grain yields even after a two week flood, easing the 

economic and agricultural implications of flash floods and providing a more reliable rice 

crop in rain-fed regions of weather instability.142    

Under submergence conditions, the plant hormone ethylene is entrapped and 

accumulates in plant tissues.  Figure 1.7 shows the hormone cascade implicated in the 

opposing escape and growth strategies observed in response to flooding in rice.  During 

flooding, submergence-intolerant rice varieties exhibit an escape strategy in which 

ethylene increases gibberellic acid (GA) responsiveness resulting in stimulation of shoot 

elongation (Figure 1.7).143  In shallow or progressive floods, this allows the plant to grow 

by elongation to maintain photosynthetic tissue above the water level and return to 

normal photosynthesis and respiration.  If the flood is deep, this escape strategy can result 

in a depletion of carbohydrate stores leaving the plant unable to recover once the 

floodwaters recede.  Submergence tolerance is conferred by the presence of the SUB1A-1  
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Figure 1.7.  (a) The hormone cascade involved in rice submergence response.  Upon 

complete submergence, ethylene is entrapped resulting in decreased bioactivity of 

abscisic acid and an increase in gibberellic acid activity, resulting in shoot elongation.  In 

the presence of SUB1A, however, the activity of gibberellic activity is abrogated, 

resulting in reduced growth and carbohydrate conservation. (b) An illustration 

highlighting the difference in the growth of plants exhibiting either the quiescence or 

escape strategy. 
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allele of the SUB1A gene, encoding a group VII ethylene responsive transcription 

factor.144, 141  Ethylene accumulation during submergence induces transcription of 

SUB1A, which reduces responsiveness to GA via the GA-signaling repressors SLENDER 

RICE-1 (SLR1) and SLR-LIKE-1 (SLRL1), with the effect of abrogating GA driven 

carbohydrate consumption and elongation, characterized as a quiescence strategy (Figure 

1.7).145  SUB1A has also been linked to ethanolic fermentation, with SUB1A containing 

plants showing greater accumulation of mRNAs and enzymatic activity for pyruvate 

decarboxylase (PDC) and alcohol dehydrogenase (ADH) during submergence compared 

to SUB1A-deficient plants.144 These differences in transcripts and enzymatic activity 

suggested that SUB1A might promote fermentative metabolism; however, further 

analysis revealed that M202(Sub1) had a reduced ethanol accumulation compared to the 

intolerant variety.  These observations support the hypothesis that SUB1A limits 

carbohydrate consumption under submergence stress. However, they also indicate that 

there can be inconsistencies between transcript levels and enzymatic activities, 

emphasizing the benefit of metabolite analysis in conjunction with gene expression or 

enzyme assays.  Because of the complex relationships in systems biology, the connection 

of transcriptomics experiments with downstream metabolic activity will provide a more 

detailed understanding of submergence.  Figure 1.8 highlights the various metabolites 

related to carbohydrate consumption/glycolysis including the TCA cycle, nitrogen 

assimilation/storage, carbon allocation, and amino acid metabolism that might be affected 

by the presence or absence of the SUB1A gene.  Although the difference of the M202 and 

M202(Sub1) varieties is a single gene, the metabolic affects can be wide ranging. 
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Figure 1.8.  The biochemical pathways involved with glycolysis and ethanolic 

fermentation and some of the primary metabolites that can be affected by pathway 

perturbations, including the nitrogen metabolism, amino acid production, and TCA cycle 

metabolites.  
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In addition to increased submergence tolerance, SUB1A containing rice exhibits 

enhanced recovery from drought stress by decreasing leaf water loss and increasing the 

expression of genes affiliated with drought adaptation.146  Interestingly, upon de-

submergence rice plants undergo both re-oxygenation and dehydration stresses, however, 

the effects of SUB1A on the metabolite profile during de-submergence have not been 

determined.144, 146 

1.9 Summary 

The goals of this dissertation are to determine the metabolic changes that occur in 

rice during and after submergence and improve upon existing chemometric techniques 

for the automated characterization of metabolomics samples.  In Chapter 2, the effects of 

submergence and recovery on metabolites of shoot tissue of both M202 (submergence 

intolerant) and M202(Sub1) (submergence tolerant) are elucidated using 1H NMR 

spectroscopy.  Further examination of the rice metabolome in response to submergence 

and recovery stress is carried out in Chapter 3 where GC-MS is used to detect and 

quantify primary metabolites, and the results compared with those obtained by NMR.  

Class-specific detection and quantitation is explored in Chapter 4 by incorporating SPE 

and LC-MS for the analysis of trehalose-6-phosphate and other phosphorylated/anionic 

components in response to submergence and recovery stress.  In Chapter 5 a new 

chemometric approach, VIZR, for the automated analysis of 1H NMR spectra is reported 

and its application for identification of unique components in a set of urine spectra is 

described. Lastly, in Chapter 6 the general conclusions and future directions of the 

research in this dissertation are discussed. 
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CHAPTER TWO 

Differential Metabolic Regulation Governed by the Rice SUB1A Gene during 

Submergence Stress and Identification of Alanylglycine by 1H-NMR Spectroscopy 

Based on a paper published in Journal of Proteome Research 

J. Proteome Res. 2012, 11, 320-330 
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Abstract:   

Although the genetic mechanism of submergence survival for rice varieties containing 

the rice SUBMERGENCE1A (SUB1A) gene has been elucidated, the downstream 

metabolic effects have not yet been evaluated.  In this chapter, the metabolomes of Oryza 

sativa ssp. japonica cv. M202 and cv. M202(Sub1) were profiled using 1H NMR 

spectroscopy to compare the metabolic effect of submergence stress and recovery on rice 

in the presence or absence of SUB1A.  Significant changes were observed in the NMR 

resonances of compounds in pathways important for carbohydrate metabolism. The 

presence of SUB1A in M202(Sub1) was correlated with suppression of carbohydrate 

metabolism in shoot tissue, consistent with the role of SUB1A in limiting starch 

catabolism to fuel elongation growth.  The absence of SUB1A in M202 was correlated 
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with greater consumption of sucrose stores and accumulation of amino acids that are 

synthesized from glycolysis intermediates and pyruvate. Under submergence conditions, 

alanine, a product of pyruvate metabolism, showed the largest difference between the two 

varieties, but elevated levels of glutamine, glutamate, leucine, isoleucine, threonine, and 

valine were also higher in M202 compared with the M202(Sub1) variety. The 

identification and characterization of alanylglycine (AlaGly) in rice is also reported.  

After 3 d of submergence stress, AlaGly levels decreased significantly in both genotypes 

but did not recover within 1 d of de-submergence with other the metabolites evaluated.  

The influence of SUB1A on dynamic changes in the metabolome during complete 

submergence provides new insights into the functional roles of a single gene in invoking 

a quiescence strategy that helps stabilize crop production in submergence-prone fields. 

 

2.1 Introduction 

Exploration of the metabolic response of rice to submergence and reoxygenation 

stress was undertaken with the goal of providing new insights into metabolic regulation 

governed by the SUB1A gene.  Through transcript and biochemical analyses, the SUB1A 

gene has been linked to lower carbohydrate consumption under submerged conditions 

resulting in a quiescence strategy that enables the plant to endure prolonged flash 

flooding events (Figure 1.6).1-3  For rice plants that do not contain the SUB1A gene, 

submergence leads to increased carbohydrate consumption and shoot elongation, with the 

plant attempting to outgrow the flood waters to resume oxidative respiration and 

photosynthesis.1-3   



 71 

Recently, Jung et al.4 and Mustroph et al.5 reported microarray analyses of mRNA 

transcripts in M202 and M202(Sub1) plants under submerged and control conditions.  

These near-isogenic lines differed significantly in the submergence responsive expression 

of over 800 genes. Both studies showed variation in genes associated with carbohydrate 

metabolism, alcoholic fermentation and the biosynthesis of various amino acids.  

Although SUB1A coordinates accumulation of various transcripts associated with 

acclimation responses to submergence, the influence of the gene on metabolic 

adjustments remains unclear.   

The goal of this chapter is to use NMR-based metabolomics to evaluate the 

downstream effects of SUB1A on the metabolic profile of rice plants under control and 

submerged conditions, and during submergence recovery.  These experiments will 

provide insights into metabolic regulation during low oxygen stress in rice plants with 

and without the SUB1A gene, thereby providing insights into the complex submergence 

response of submergence tolerant and intolerant rice.  Metabolite levels were measured in 

both the M202 and M202(Sub1) genotypes in two time course experiments performed for 

0, 1, 2, 3 d, or 0, 3, 7, 12 d of submergence in both genotypes.  Metabolite levels were 

also measured after a 1 d recovery period to probe whether SUB1A affects the 

reestablishment of a normal metabolic profile upon de-submergence.   

2.2 Materials and Methods 

2.2.1 Chemicals.  

Deuterium oxide, sodium-3-trimethylsilylpropionic acid – d4 (TMSP), acetic acid 

– d4, and ammonium deuteroxide – d5 were purchased from Cambridge Isotope 
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Laboratories, Inc. (Andover, Massachusetts, USA).  Pure water (18 MΩ) was obtained by 

filtration with a Millipore filtration system (Millipore, Billerica, MA, USA).  All other 

solvents used for this study were HPLC grade (≥ 99% purity).  Methanol (MeOH), glacial 

acetic acid, and D,L-alanine glycine (AlaGly) were obtained from Fisher Scientific 

(Pittsburgh, PA, USA).  Ammonium hydroxide was obtained from EMD Chemicals 

(Merck, Darmstadt, GER).  All other solvents were obtained from Sigma-Aldrich (St. 

Louis, MO, USA).  Metabolite standards were purchased from the following companies: 

shikimate, glucose and sucrose from Sigma-Aldrich, valine (Val), leucine (Leu), 

isoleucine (Ile), glutamate (Glu), aspartate (Asp), asparagine (Asn), alanine (Ala), 

threonine (Thr), serine (Ser), and tyrosine (Tyr) from Fisher Scientific, and glutamine 

(Gln) from MP Biomedicals (Solon, OH, USA). 

2.2.2 Growth Conditions and Plant Materials  

Rice was grown and submergence-stressed as reported by Fukao, et al.6  Briefly, 

the seeds were surface sterilized with 1% (v/v) sodium hypochlorite and 0.2% (v/v) 

Tween-20, and rinsed thoroughly using deionized (DI) water.  The seeds were soaked in 

DI water overnight in the dark and placed on moist paper in a Pyrex dish covered with 

plastic wrap for 5 days.  Following germination, seeds were transplanted into pots with 

soil (25 plants per pot) and grown for 12 days (until the 3-leaf stage) in greenhouse 

conditions at 30 °C.  The survival rate of the transplanted seedlings was greater than 

99%. 
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2.2.3 Submergence Treatment and Plant Harvest   

Prior to submergence treatment, six 12 1 liter trash cans were filled with DI water 

and allowed to equilibrate overnight in the greenhouse to the ambient temperature 

(~30 °C).  Once the seedlings reached the three fully-expanded leaf stage, two 

submergence experiments were performed. In the long-term submergence experiment 

plants were submerged for 0, 3, 7, and 12 d or were subjected to 12 d submergence and 1 

d recovery. In the short-term submergence experiment, plants were submerged for 0, 1, 2, 

3 d or were subjected to 3 d submergence and 1 d recovery.  For the recovery, plants were 

de-submerged and were allowed to recover for 24 h on the greenhouse bench. For tissue 

harvest, plants were de-submerged and shoot tissue was immediately harvested, rinsed in 

DI water, flash frozen in liquid nitrogen and stored at -80 °C.  Control tissues (the 0 d 

treatment from both experiments) were harvested at the beginning of submergence 

treatment. In the short-term experiment, an additional 4 d no-submergence control was 

harvested with the 3 d submergence and 1 d recovery plants. All submergence treatments 

began at 1 PM and all plants were harvested at 1 PM on the day of treatment completion. 

Prior to analysis, shoot tissue was ground to a fine powder by mortar and pestle under 

liquid nitrogen, lyophilized overnight until dry, and stored at -80 °C.  There were a total 

of six biological replicates for each condition, with the plants from one pot (n=25) 

combined in a tissue pool to create one biological replicate.   
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2.2.4 Metabolite Extraction   

2.2.4.1 Metabolite Extraction for Samples from the Long-term Submergence Treatment  

 Metabolites were extracted from 20 mg dry weight (D.W.) of lyophilized tissue 

in 80/20 MeOH/H2O using a procedure similar to that described by Kaiser et al. (2009).7  

The aqueous component of the extraction solvent contained 100 mM acetic acid adjusted 

to pH 4.7 with ammonium hydroxide.  A 1.0 mL aliquot of the MeOH/H2O extraction 

buffer was added to the dried tissue and agitated for 1 m at 300 rpm using a platform 

shaker.  Samples were centrifuged at 12 000 x g for 4 m and 800 µL of supernatant 

transferred to a clean 1.5 mL Eppendorf micro-centrifuge tube (the pellet was discarded).  

Samples were centrifuged under vacuum overnight until dry using a Thermo-Savant 

SC110 model speed vacuum equipped with a RVT400 refrigerated vapor trap and a 

GP110 gel pump. Dried samples were stored at -20 °C prior to reconstitution and 

analysis.  Immediately prior to NMR analysis, samples were dissolved in 700 µL of D2O 

reconstitution buffer containing 100 mM deuterated acetic acid adjusted to pD 7.6 with 

ammonium deuteroxide – d5.  The solution pD was calculated from the pH meter reading 

(pH*) using the equation pD = pH* + 0.4.8  The reconstitution buffer also contained 175 

µM TMSP as a 1H NMR chemical shift reference. Prior to analysis, a liquid-liquid 

extraction was performed with 100 µL CDCl3 to remove residual lipids.7 The sample was 

briefly vortexed and then centrifuged for 2 m at 5 000 x g to break the emulsion after 

which a 620 µL aliquot of the D2O phase was transferred to a 5 mm NMR tube for 

analysis. 
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2.2.4.2 Metabolite Extraction for Samples from the Short-term Submergence Treatment.  

The extraction for the short-term treatment was performed as described above 

except that 45 mg of dry tissue was extracted with 1.5 mL of the 80/20 MeOH/H2O 

extraction buffer.  After centrifugation for 2 m at 5 000 x g to break the emulsion, 1.0 mL 

of the supernatant was transferred to a clean vial for drying by speed vacuum.  The 

remaining steps prior to analysis were performed as described above.  This extraction 

method differed from the protocol used for the long-term submergence experiment 

because more tissue was available for extraction, allowing increased metabolite 

concentrations and shorter NMR analysis times. 

2.2.5 NMR Analysis   

2.2.5.1 Data Acquisition for Metabolite Analysis   

All samples were analyzed with a 14.1 T Bruker Avance NMR spectrometer 

tuned to detect 1H resonances at 599.84 MHz.  1H NMR spectra were collected with a 5 

mm inverse broadband probe with xyz gradients using the Bruker-defined wet pulse 

program (wet) to reduce the intensity of the residual water resonance.9  Digital quadrature 

detection (DQD) was used with a transmitter frequency set on the water resonance.  The 

probe was tuned and matched manually and the magnetic field homogeneity was 

optimized using up to 28 shims.  The sample temperature was maintained at 298 K.  

Samples were locked using D2O and spectra were acquired without spinning. The TMSP 

line-widths after apodization with an exponential function equivalent to 0.5 Hz line 

broadening were 1.6 ± 0.2 Hz and 1.4 ± 0.1 Hz for the long-term and short-term 

submergence experiments, respectively.  Free induction decays (FIDs) were collected 
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into 32 768 points and zero-filled to 65 536 points.  For the long-term submergence 

experiments, a spectral width of 11.97 ppm was collected with a 10.7 µs 90° pulse. A 

relaxation delay of 1.5 s was used and 16 dummy scans were followed by coaddition of 

1200 transients for a total experiment time of 1.30 h at a temperature of 298 K.  For the 

short-term submergence experiment, the same parameters were applied except a 10.5 µs 

90°excitation pulse was used to collect 16 dummy scans followed by 640 co-added scans 

for a total experiment time of 0.70 h.   

2.2.5.2 Data Acquisition for Metabolite Identification   

For metabolite identification, 200 mg of rice (D.W.) were extracted (as described 

for the short-term experiment) and the extracts combined to form a concentrated rice 

sample that was analyzed by NMR. Metabolite identification was facilitated by 

acquisition of two-dimensional NMR spectra which provided homonuclear and 

heteronuclear correlations. 

The total correlation spectroscopy (TOCSY) spectrum was measured using the 

Bruker pulse sequence mlevphpr with presaturation of the residual water resonance 

during the 2.0 s relaxation delay for a total experiment time of 12.33 h.10  A 1H 

transmitter frequency of 4.696 ppm was used with spectral widths of 11.97 ppm in F1 

and F2 excited by an 11.38 µs 90°excitation pulse.  Phase-sensitive data was acquired 

using DQD according to the States-TPPI method.11 Co-addition of 32 FIDs for each of 

512 increments was preceded by 16 dummy scans with 8192 data points per FID 

(complex).  A trim-pulse of 2.5 ms was used with a spin-lock duration of 80 ms. Spectra 

were processed using a sine-bell shaped window function phase-shifted by 90° and were 
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zero-filled to yield a 8192 x 2048 data matrix prior to Fourier transformation. The phase 

of each spectrum was adjusted manually and automatic baseline correction performed 

using a 5th order polynomial function. 

 The multiplicity-edited 1H-13C heteronuclear single quantum coherence (HSQC) 

spectrum was collected using DQD according to the echo-antiecho method12-15 using the 

Bruker pulse program hsqcedetgpsip.2 with 13C GARP decoupling during acquisition 

applied with a ±14 kHz decoupling bandwidth.  The 11.97 ppm 1H spectral width was 

excited with a 9.25 µs 1H 90° pulse and the 140 ppm 13C spectral width was excited by a 

13C 90° pulse of 19.5 µs.  The 1H offset frequency was 4.696 ppm, the 13C offset 

frequency was 80 ppm, and the JCH was set to 145 Hz.  The relaxation delay was 1.5 s 

and 16 dummy scans preceded co-addition of 80 FIDs for each of 512 increments. The 

total experiment time for the metabolite extract was 19 h 5 m.  Spectra were zero-filled to 

give a 4096 x 1024 data matrix, apodized using a sine-bell window function phase-shifted 

90°, Fourier transformed and baseline, and phase corrected as described above. 

 The 1H-13C heteronuclear multiple bond correlation (HMBC) spectrum was 

collected using DQD according to the QF method using the Bruker pulse program 

hmbcgplpndqf.16, 17  A 9.38 µs 1H 90° pulse excited the 11.97 ppm 1H spectral width and 

a 19.5 µs 13C pulse excited the 260 ppm spectral width.  The 1H and 13C offsets were 

4.700 and 100.00 ppm, respectively.  The JCH was set to 159 Hz and the long range 

coupling set at 4.59 Hz.  A relaxation delay of 1.5 s and 16 dummy scans preceded the 

co-addition of 96 FIDs for each of 512 increments for a total experiment time of  
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1 d 2 h 5 m.  Spectra were zero-filled to give an 8192 x 1024 data matrix, and apodized, 

Fourier transformed, baseline and phase corrected as described for the HSQC experiment. 

For identification of AlaGly, a multiplicity-edited 1H-13C HSQC and 1H-13C 

HMBC spectrum was collected for a 5 mM solution of the racemic AlaGly compound in 

the same deuterated buffer described in section 2.2.4.1.  The experiment was performed 

similarly to that for the concentrated rice extract as described above except co-addition of 

16 FIDs followed 16 dummy scans for each of 256 increments for a total experiment time 

of 1 h 54 m for the HSQC experiment and 2 h 10 m for the HMBC experiment. 

2.2.5.3 NMR Data Processing and NMR Prediction   

One-dimensional NMR spectra were processed using MestReNova version 6.1.1 

(Mestrelab Research S.L., Santiago de Compostela, Spain).  Due to the complex nature of 

the spectra, automatic phasing was followed by manual adjustment as needed and manual 

baseline correction using the multipoint baseline correction feature in MestReNova.  

Baseline points were selected in spectral regions not containing any peaks and the 

segments algorithm of the multipoint baseline correction feature was selected to connect 

the points with a flat line that the program defines as a baseline value of zero.  Peak 

integration for 1H-NMR was performed using the line fitting function available on 

MestReNova with a 0.05 Hz and 10.00 Hz lower and upper width constraints, 

respectively, a 13.0% position constraint, and a maximum of 200 iterations with a local 

minima filter of 5.  2D NMR spectra were processed using Bruker TopSpin ver. 1.3 

(Bruker Biospin Corporation, Billerica, MA, USA).  1H and 13C spectra predictions for 
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AlaGly were calculated using the ACDlabs prediction software (Advanced Chemistry 

Development, Inc, Toronto, Canada). 

2.2.6 Data Analysis 

2.2.6.1 Principal Component Analysis   

Principal component analysis (PCA) was carried out using Minitab 15 (Minitab 

Inc, State Park, PA, USA).  Bucket integration (binning) for PCA was performed 

manually with integral bins spanning 0.02 ppm from 0.5 - 9.0 ppm.28 The data was mean-

centered using Excel.  Each spectrum was normalized to the sum of the bins ranging from 

0.5 - 9.0 ppm and excluding regions containing HOD (4.54 - 5.00 ppm), methanol (3.34 - 

3.38 ppm), and a minor buffer contaminant identified by analysis of a buffer blank (1.22 - 

1.28 and 0.88 - 0.92 ppm).  Because sucrose was by far the most abundant metabolite in 

the spectrum, bins corresponding to the sucrose resonances were removed prior to 

multivariate analysis to better evaluate variance contributions of other metabolites.   

2.2.6.2 Univariate Statistical Analysis  

Univariate data analysis was carried out using the integrals of the resonances of 

individual metabolites from the peak-fitted data and normalized to the sum of the entire 

spectrum (as described in section 2.2.6.1).  Fold changes were calculated by averaging 

the results for at least five biological replicates of each variety per time point and taking 

the ratio of the averages determined for the M202 and M202(Sub1) varieties.  The 

significance of the fold changes were evaluated using SPSS Statistics 19 (IBM, Armonk, 

NY, USA).  Trajectory plots were generated using Origin 7.5 (OriginLab, Northampton, 

MA, USA) and used in Figures 2.2 and 2.5 to represent the relative area of a specific 



 80 

metabolite over the course of the treatment period.  The error bars included in these plots 

represent the standard deviation of the mean.  Averages and standard deviations for the 

trajectory plots were calculated in Excel (Microsoft, Redmond, WA, USA). 

2.3 Results and Discussion 

Two experiments were carried out to evaluate the metabolic differences between 

the shoot tissue of the M202(Sub1) and M202 rice varieties during and one day following 

submergence stress.  Initially, a long-term submergence experiment was conducted to 

evaluate differences in metabolite reconfiguration over an extended time period and to 

establish how early in the stress significant differences in the metabolite levels of the two 

varieties could be detected.  The long-term experiment consisted of a 0 d control, 1, 3, 7, 

and 12 d submergence or 12 d submergence with 1 d of recovery.   After observing 

marked differences in relative metabolite levels as early as day 3 of the submergence 

treatment, we performed a shorter time-course consisting of a 1 d control (1dc), 1, 2, and 

3 d of submergence or 3 d of submergence with 1 d recovery. The shorter time-course 

was designed to observe the more immediate submergence response of the two varieties, 

and because M202 did not survive being submerged for 12 d, this experiment also 

provided the opportunity to evaluate recovery of both the M202 and M202(Sub1) 

varieties following de-submergence.  The short-term submergence experiment also 

included a terminal control harvested with the 1 d recovery samples. The purpose of this 

4 d control (4dc) was to account for metabolite differences as a function of plant growth 

over the course of the treatment period.   
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Figure 2.1. Selected regions from representative 1H NMR spectra comparing the 

M202(Sub1) and M202 rice varieties at different submergence time points: (a)  and (e) 

M202 1 d control (1dc), (b) and (f)  M202(Sub1) 1dc, (c) and (g) M202 at 3 d 

submergence, and (e) and (h) M202(Sub1) at 3 d submergence. The well-resolved 

resonances of selected metabolites are labeled. 
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The evaluation of metabolite reconfiguration as a consequence of submergence 

stress in the presence or absence of SUB1A was accomplished using NMR spectroscopy.  

Figure 2.1 shows representative spectra from the short-term submergence experiment 

comparing the two nearly genetically identical varieties.  Two regions of the spectrum 

were chosen to represent the effects of submergence on plants with and without the 

SUB1A gene.  The first region contains the resonances of Ala, Ile, Thr, and Val (Figure 

2.1a-d) while the second region contains Asn, Asp, Glu, Gln, and S-methylmethionine 

(SMM) (Figure 2.1 e-h).  The panels compare the 1 d control (Figure 2.1 a, b, e and f) 

and 3 d submergence treatment samples (Figure 2.1 c, d, g and h) of the two genotypes. 

Metabolic differences are clearly distinguishable as a consequence of submergence and 

as determined by genotype in the representative spectra for metabolites such as Ala, Gln, 

SMM, Thr, and Val demonstrating both the impact of submergence and an effect of the 

presence of the SUB1A gene.  Although the control spectra of the two genotypes are 

similar, the response of the M202 variety to submergence stress produces a significant 

elevation in the levels of several metabolites compared to M202(Sub1). These data 

demonstrate that SUB1A has an observable impact on metabolic regulation during 

submergence stress even without data manipulation (such as normalization).  

2.3.1  Evaluation of the Data Normalization Method  

Quantitative interpretation of the metabolomics data measured for the two 

submergence experiments was accomplished using PCA and by direct comparison of 

resonance integrals. The data was sum-normalized prior to statistical analysis to 

compensate for differences in extraction efficiency and other experimental parameters, 
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for example receiver gain or dilution.18  To ensure that the sum-normalization method 

was robust, non-normalized ratios of the integrals measured for the anomeric resonances 

of sucrose and glucose ( anomer only) were calculated for each replicate.  After 

averaging the six replicates for each experiment and calculating the standard deviation 

from the raw integrated data, the ratios were plotted as a function of treatment (Figure 

2.2a) and compared to the sum-normalized metabolite abundance plots (Figure 2.2b and 

c).  Analysis of the sum-normalized data for the individual metabolites showed a decrease 

of available sucrose in both varieties (Figure 2.2b), although the decrease was less severe 

in the submergence tolerant M202(Sub1) variety, consistent with an earlier report.6  

Sucrose decreased continuously in M202 shoot tissue, whereas the decline in 

M202(Sub1) was significantly attenuated after an initial spike in glucose levels (Figure 

2.2c).  The evaluation of the sucrose:glucose ratio (Figure 2.2a) revealed that the relative 

levels of these two carbohydrates was maintained during submergence in both genotypes 

but increased dramatically in response to de-submergence in the M202(Sub1) variety. In 

this comparative analysis, the sum-normalization of the metabolite abundance data set 

provided an unbiased evaluation of metabolic changes. 

2.3.2 Global Analysis of NMR Metabolite Profiles Comparing Submergence-stressed 

M202 and M202(Sub1) Rice   

Global metabolic differences between the NMR spectra measured for extracts of 

the control, submergence stressed and de-submerged M202 and M202(Sub1) plants were 

first explored by PCA of the sum-normalized bins.  These bins comprised 356 variables  
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Figure 2.2. Relative abundance of sucrose and glucose over the time course of short-term 

submergence and recovery in the two rice genotypes, M202 (■) and M202(Sub1) (●). (a) 

The trajectory plot shows the sucrose/glucose ratios determined from the raw integrated 

NMR data.  The trajectory plots for (b) sucrose and (c) glucose show the relative 

abundance of each metabolite after sum normalization.  Each point is the average of at 

least five biological replicates with the error bars representing the standard deviation.   

Asterisks represent a significant difference between the varieties at the 95% confidence 

interval. Treatment time points: 1 d control (1dc), 1, 2, 3 d submergence (1d, 2d, 3d), and 

3 d submergence + 1 d recovery (1R). 
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after removal of the solvent, contaminant and sucrose regions as described in section 

2.2.6.1.  The data analysis presented below explores both the effect of submergence as 

well as the SUB1A gene during submergence stress on the metabolic response of rice 

shoot tissue. 

2.3.2.1 PCA Analysis of the Long-term Submergence Data   

Figure 2.3a shows the scores plots for the long-term submergence experiment. 

PC1 and PC2 represented 65% and 17% of the variance, respectively, and were used for 

data interpretation.    The long-term submergence experiment scores plot (Figure 2.3a) 

contains eight distinct groups that represent the control samples and the individual 

treatments. Of the stress treatment samples, only the 12 d submergence and 12 d 

submergence followed by 1 d recovery of the M202 variety grouped together.  The 

overlap of the control time points from the two varieties indicates minimal variance at the 

metabolic level due to the presence or absence of the SUB1A gene under non-stress 

growth conditions.  The loadings plot (Figure 2.3b) shows contributions to PC1 and PC2 

due to regions of the NMR spectrum that differ in extracts of plants subjected to long-

term submergence either between the two varieties of rice or between treatments within 

the same genotype.  Loadings contributing significantly to PC1 are due to metabolites 

such as Asp (2.85, 2.87 ppm), Asn (2.95 ppm), and Asn/SMM (2.97 ppm). The most 

significant contributions to PC2 are due to the integral regions 3.41 and 3.71, 3.73 ppm, 

most likely reflecting changes in glucose levels.  
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Figure 2.3. (a) The scores plot showing the first two principal components for the long-

term experiment. The legend identifies the treatments for the M202 variety.  A similar 

scheme but with open symbols represents the M202(Sub1) variety.  (b) The loadings plot 

showing the variables contributing most to the variance along the first two principal 

components.   
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2.3.2.2 PCA Analysis of the Short-term Submergence Data   

For the short-term submergence experiment, PC1 and PC2 represented 82% and 

7% of the variance, respectively. The scores plot (Figure 2.4a) contains nine distinct 

groups that represent the control samples for both rice varieties and individual treatments 

for each variety.  As for the long-term submergence experiment, all controls overlapped 

indicating minimal variance between the two varieties in the absence of submergence 

stress.  Additionally, the initial (1dc) and end (4dc) controls overlapped, confirming that 

observed metabolic changes were a consequence of submergence stress and not the 

progression in plant development.   The loadings plot (Figure 2.4b) identified several bins 

contributing to separation along PC1 and PC2. The bins representing the largest 

contributions to PC1are attributed to the resonances of metabolites such as Ile (0.94) Val 

(0.99, 1.05 ppm), Leu/Ile (0.97 ppm), Ala (1.47, 1.49 ppm), Glu (2.35, 2.37 ppm), and 

Asn/SMM (2.97 ppm).  As was observed for the long-term submergence experiment, the 

most significant loadings for PC2 are the regions 3.41, 3.71, and 3.73 ppm containing the 

resonances of glucose.  In both experiments, interaction of the treatment with the variety 

was responsible for the greatest amount of variance.  Furthermore, the PCA results 

clearly showed a change in the overall metabolome in response to submergence and de-

submergence that was distinct in the two varieties differing only in the presence or 

absence of the SUB1A gene.   
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Figure 2.4. (a) The scores plot showing the first two principal components from the 

short-term experiment. The legend identifies the treatments for the M202 variety.  A 

similar scheme but with open symbols represents the M202(Sub1) variety.  (b) The 

loadings plot showing the variables contributing most to the variance along the first two 

principal components.   
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2.3.3 The Effects of Submergence Stress on Carbohydrate Consumption  

Carbohydrate consumption and elongation growth has been shown to be a 

survival strategy with costs that outweigh benefits in a transient deep flooding event, 

causing more rapid exhaustion of energy reserves and ultimately death of varieties that do 

not contain the SUB1A gene.6 Indeed, the data presented here provide an expanded 

perspective of the complex metabolic response to submergence stress in the submergence 

intolerant M202 and submergence tolerant M202(Sub1) varieties.6  To evaluate 

differences in carbohydrate metabolism in the two genotypes under the treatment 

conditions in the 3 d submergence experiment, the normalized areas of the sucrose and 

glucose ( only) anomeric resonances were plotted (Figure 2.2 b and c).  Differences 

between the metabolite levels in M202 and M202(Sub1) that are significant at the 95% 

confidence interval are indicated by an asterisk. The results in Figure 2.2 are also 

presented in tabular format as fold changes relative to the control for each variety (Table 

2.1) and as fold changes comparatively between the two varieties (Table 2.2), with 

significance at the 95% confidence interval indicated by an asterisk.  Our results showed 

a consistent distinction between the two genotypes in the changes in the abundance of 

sucrose during the submergence.  Here we show that short-term submergence promotes a 

rapid decrease in sucrose levels by the first day of submergence, followed by either no 

further change in M202(Sub1) or continued reduction in M202 shoot tissue (Figure 2.2b, 

Tables 2.1 and 2.2). This finding is consistent with the previous proposal that SUB1A 

acts to restrict the breakdown of leaf starch and soluble carbohydrates during 

submergence to limit the availability of energy reserves necessary to fuel elongation 
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Table 2.1.  Ratios of quantified metabolites comparing the treatments to the control 

for the same genotype.  The treatments include one (1d), two (2d), and three (3d) day 

submergence treatments, and a three day submergence treatment followed by one day 

of recovery (1R).  The ratios are obtained from the average of at least five biological 

replicates.   
 M202(Sub1) M202 

 1d 2d 3d R1 1d 2d 3d 1R 

AlaGly  1.6* 1.3 0.8 0.6* 1.2 1.0 0.6* 0.5* 

Ala  3.2* 4.7* 15.2* 1.0 3.1* 7.2* 9.6* 3.4* 

Asn  NQ NQ NQ NQ NQ NQ NQ NQ 

Asp  3.3* 2.9 3.4 0.6 2.3* 2.5 3.0 1.1* 

Gln  1.7* 1.5* 1.6* 2.3* 2.0* 1.8* 1.4* 1.3* 

Glu  2.2* 2.6* 3.1* 1.0* 1.9* 2.3* 2.5* 1.2* 

Glucose 1.6 1.8* 4.5* 0.7* 0.8* 1.5* 2.2* 1.4* 

Ile  NQ NQ NQ NQ NQ NQ NQ NQ 

Leu  NQ NQ NQ NQ NQ NQ NQ NQ 

Ser  2.2* 2.3* 3.2* 0.8* 1.9* 2.6* 2.7* 1.0 

Shikimate 1.3 1.2 0.3 0.9 1.4 1.6 0.4 0.3 

SMM NQ NQ NQ NQ NQ NQ NQ NQ 

Sucrose 0.7* 0.6* 0.3* 0.9* 0.6* 0.4* 0.4* 0.9 

Thr  5.0* 6.7* 14.6* 1.0 3.8* 6.2* 8.5* 1.6 

Tyr  NQ NQ NQ NQ NQ NQ NQ NQ 

Val  10.5* 16.3* 31.6* 1.1* 8.8* 17.4* 23.6* 2.6* 
 

Values marked with an asterisk indicate significant differences between 

the control and treated plants at the 95% confidence interval.  Metabolites 

not detectable in the controls are represented by NQ (not quantifiable) in 

the reported fold change values. 
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Table 2.2. Ratios of the quantified metabolites measured for M202 versus M202(Sub1) at 

specific treatment time points in the short-term submergence experiment. The treatments 

include a control (1dc), one (1d), two (2d), and three (3d) day submergence treatments, 

and a three day submergence treatment followed by one day of recovery (1R).  The ratios 

are obtained from the average of at least five biological replicates.   

 
 M202/M202(Sub1) 

  1dc 1d 2d 3d 1R 
AlaGly  1.3 1.0 1.0 0.8 1.0 

Ala  1.6 1.6*  2.5*  2.3*  5.5*  

Asn  ND  0.6 1.1 1.5 ND 

Asp  1.1 0.8 0.9 1.0 1.8 

Gln  2.0*  1.0 1.7*  2.0*  4.1*  

Glu  1.3 1.0 1.1*  1.1*  1.5*  

Glucose 1.2 1.3*  1.3*  1.0  0.7*  

Ile  ND  1.1 1.5*  1.4*  4.5  

Leu  ND  1.0 1.2*  1.2 2.3  

Ser  1.2 1.1 1.4*  1.3 1.4 

Shikimate 0.8 0.9 1.1 0.4 0.3 

SMM ND  0.7 0.9 1.2 1.9 

Sucrose 1.0 0.9 0.7*  0.6*  1.0 

Thr  1.7 1.3 1.6*  1.7*  2.8*  

Tyr  ND  ND  1.5  1.4 2.1 

Val  1.3 1.1 1.4*  1.4*  3.3*  

Values marked with an asterisk indicate 

significant differences between the varieties at a 

95% confidence interval. Metabolites not 

detectable in both varieties are represented by 

ND. 
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growth.6  Evaluation of the recovery period after short-term submergence revealed a 

remarkable ability of both varieties to replenish sucrose to levels comparable to those of 

control plants, indicating that submergence stress did not irreversibly damage the 

capacity to accumulate sucrose upon recovery in either variety via phosphorylation. The 

levels of glucose were greater during submergence than during growth in air in both 

genotypes, with higher accumulation in M202 at day 1 and day 2 by a fold change of 1.3 

compared to the M202(Sub1) genotype (Table 2.2, Figure 2.2c). Interestingly, glucose 

levels reached a maximum after 1 d of submergence and then declined over the next 2 d 

of submergence in M202 until de-submergence.  This may reflect the more pronounced 

degradation of starch during submergence in M202. In fact, starch reserves in aerial 

tissue were more quickly consumed in M202 than M202(Sub1) during submergence, 

consistent with higher levels of transcripts encoding enzymes associated with starch and 

sucrose catabolism.6  During the recovery period, relative glucose levels remained stable 

in the M202 variety and increased in M202(Sub1). The rise in glucose in M202(Sub1) 

shoots during recovery can be indicative of a higher level of photosynthesis after de-

submergence in the submergence tolerant variety, consistent with the finding by Fukao 

and co-workers that M202(Sub1) shoots maintain significantly higher amounts of 

chlorophyll a and b during submergence.6  These differences in the dynamics of sucrose 

and glucose accumulation in the two genotypes results in significant differences in the 

ratios of these two metabolites over the treatment time course (Figure 2.2a). Altogether, 

these data emphasize the function of SUB1A in the restriction of carbohydrate 

consumption in shoot tissue during submergence stress.  
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2.3.4 Amino Acid Metabolism.   

The normalized areas of the well-resolved resonances of the other quantified 

metabolites were plotted for both genotypes over the time-course of the 3 d submergence 

experiment (Figure 2.5).  Differences between the metabolite levels in M202 and 

M202(Sub1) that are significant at the 95% confidence interval are indicated by an 

asterisk.  With the exception of Gln, the relative levels of the metabolites measured for 

the controls are statistically indistinguishable for the two genotypes. For most 

metabolites, a consistent trend is observed; normalized area increases over the course of 

the submergence treatment and then decreases rapidly during the recovery period (Figure 

2.5).  

Waterlogging and hypoxia, a component of submergence stress,19 can promote the 

accumulation of Ala and other free amino acids in various organs of Arabidopsis, rice, 

popular, potato, soybean, wheat and Medicago truncatula.20-26  When oxidative 

respiration is limited in plant cells, pyruvate, a final product of glycolysis, is converted to 

the fermentation end products ethanol and lactic acid as well as succinate, γ-

aminobutyrate (GABA), Ala and some other amino acids or their precursors.2  It has been 

proposed that the prioritized conversion of pyruvate to Ala may contribute to cell survival 

under oxygen deprivation by limiting cytosolic acidification by lactate and loss of carbon 

skeletons through diffusion of ethanol out of cells.2, 27-29  Our 1H-NMR spectra revealed 

submergence-promoted accumulation of 11 amino acids in aerial tissue of M202 and 

M202(Sub1) (Figure 2.5).  Transient rises of these amino acids including Ala, Ile, Leu, 

Ser, Thr, Tyr and Val were observed in response to submergence in both varieties but 
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Figure 2.5. Abundance of detected metabolites over the time course of short-term 

submergence and recovery for M202 (■) and M202(Sub1) (●) by NMR. Each data point 

represents the average of metabolite levels determined from normalized peak areas of at 

least five biological replicates with the error bars indicating the standard deviation.  

Asterisks indicate a significant difference between the varieties at the 95% confidence 

interval. Treatment time points: 1 d control (1dc), 1, 2, 3 d submergence (1d, 2d, 3d), and 

3 d submergence + 1 d recovery (1R). 
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were consistently less acute in M202(Sub1) shoot tissue, reaching 1.2-2.5 fold higher 

levels in M202 relative to M202(Sub1) (Table 2.2, Figure 2.2).  Increases in a number of 

these amino acids have been reported in studies of metabolome adjustments in response 

to oxygen deprivation and other abiotic stresses.30-33, 26, 25, 34 It is believed that these 

amino acids can be converted back to either glycolytic or TCA cycle intermediates for 

energy production upon recovery from oxygen deprivation.2  Consistent with this 

hypothesis, levels of the 11 identified amino acids that accumulated during submergence 

dramatically decreased 1 d after recovery in both varieties (Figure 2.5). The rapid decline 

in the amino acids upon de-submergence provides support of the hypothesis that 

production of these metabolites, as an alternative to ethanol, allows carbon to be recycled 

upon reoxygenation 6  Although de-submergence led to a decline in the abundance of the 

amino acids, the significantly higher levels of these amino acids in M202 after 1d 

recovery indicates that there may be additional stress associated with de-submergence 

that is alleviated in the M202(Sub1) variety (Table 2.2). 

The effects of the SUB1A gene on nitrogen metabolism can also be inferred from 

changes in Ala, Glu, Gln, Asn, and Asp.  Although implicated as a carbon sink, Ala can 

also be used to store nitrogen as well. It has been reported that assimilated 15NH4 is 

preferably accumulated in Ala in the green alga Selenastrum minutum under oxygen 

deficiency.35  Ricoult and co-workers also showed the accumulation of nitrogen-labeled 

Ala instead of Asn occurred during anoxia in the model legume Medicago truncatula.23  

Ammonium is assimilated into Gln and sequentially converted into Glu. In addition, Glu 

and Asn can be synthesized from Gln and Asp by Asn synthetase. Based on results of this 
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study, the SUB1A gene may also be involved in the regulation of nitrogen assimilation 

during submergence.  Submergence increased the levels of Glu, and Gln in aerial tissue 

of the two genotypes, but these amino acids were significantly more abundant in M202, 

whereas Asn and Asp accumulated similarly in M202 and M202(Sub1) (Figure 2.5).  In 

the future, metabolic flux studies might be used to determine if the limitation of Gln and 

Glu accumulation in M202(Sub1) provides another example of an energy-saving 

mechanism mediated by SUB1A, due to the requirement for ATP consumption in the 

production of Glu through ammonium assimilation. A pathway diagram summarizing the 

detected components and their relationship to central carbon metabolism are provided in 

Figure 2.6, showing the differences of each metabolite as a function of stress and 

genotype.  The relative abundance of each metabolite is represented as bar graphs and 

statistical significance at the 95% confidence interval indicated by an asterisk.  The effect 

of submergence on the detected metabolites and their respective biochemical pathways 

indicates that central carbon metabolism is severely affected in both genotypes but less 

profoundly in the M202(Sub1) genotype.  Figure 2.6 also shows the relationship of Ala 

accumulation with pyruvate and Glu metabolism, indicating a possible role for Ala as 

both a carbon and nitrogen store.  Furthermore, the accumulation of Ala by Glu 

catabolism can have an influence on the TCA cycle due to the production of 2-

oxoglutarate, a TCA cycle intermediate.   

      SMM, a cationic metabolite, was found to accumulate equally in both 

genotypes during submergence.  However other sulfur containing metabolites, such as 

methionine, SMM’s metabolic precursor, were not detected in this study.  These results  



 97 

 

 

Figure 2.6. Pathway diagram with bar graphs representing relative metabolite abundance 

as a function of treatment.  Each bar graph represents normalized average metabolite 

levels of at least 5 biological replicates at either 1dc, 1, 2, 3 d submergence (1d, 2d, 3d), 

and 3 d submergence + 1 d recovery (1R).  Asterisks indicate a significant difference 

between the varieties at the 95% confidence interval. 
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are consistent with a report showing the accumulation of SMM over other sulfur 

containing metabolites, including glutathione, cysteine, and methionine in anoxic rice 

coleoptiles.36  Menegus and co-workers also suggest that SMM functions as a storage 

form of methionine, allowing the regeneration of methionine and ultimately S-

adenosylmethionine (AdoMet).36  AdoMet, a versatile plant metabolite, is a methyl donor 

and plays a role in ethylene biosynthesis.37  Other studies have elucidated a variety of 

possible functions for SMM in plants.  Bourgis et al. (1999)38 revealed that SMM was the 

primary phloem sulfur transporter in wheat, whereas Ko and co-workers demonstrated 

that SMM is a possible 1-aminocylcopropane-1-carboxylate (ACC) synthase substrate 

and inhibitor.39  Since ACC is an ethylene precursor and SUB1A is an ethylene-induced 

gene, accumulation of SMM could act to limit the production of ethylene during the 

stress.6  Although the precise functions of SMM are not known, the connection with other 

important metabolic pathways suggest it could play roles in the submergence response of 

rice. 

2.3.5 Identification of Alanylglycine (AlaGly).  

A well-resolved doublet at 1.55 ppm, as seen in Figure 2.1 a-d, was observed in 

all non-treated rice shoot tissue samples that could not be attributed to the expected 

organic or amino acids.  Subsequent TOCSY (Figure 2.7), HMBC (Figure 2.8a), and 

HSQC (Figure 2.9a), experiments for a concentrated rice extract revealed carbon and 

proton chemical shifts for a molecule consistent with the dipeptide AlaGly.  The TOCSY 

experiment (Figure 2.7) showed the methyl resonance correlating with a methine 

resonance.   
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Figure 2.7.  TOCSY spectrum of extracted rice shoot tissue containing AlaGly.  The 

correlation of the methyl resonance (1.55 ppm) with the methine resonance (4.15 ppm) 

can be clearly seen and are labeled as “a” and “b”, respectively, to correlate with a 

proposed structure of the compound (inset).  The question marks represent unknown parts 

of the compound. 
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Figure 2.8. 1H-13C HMBC of (a) a rice sample extract containing alanylglycine and (b) 

racemic alanylglycine standard at 5 mM.  The arrows in (a) indicate the alanylglycine 

resonances. The labels in (b) are included to correlate the identified resonances with their 

respective positions in AlaGly (inset).  Question marks represent parts of the compound 

that could not be elucidated with the HSQC experiment. 
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Figure 2.9. 1H-13C HSQC of (a) a rice sample extract containing alanylglycine and (b) 

racemic alanylglycine standard at 5 mM.  The arrows in (a) indicate the alanylglycine 

resonances.  The labels in (b) are included to correlate the identified resonances with their 

respective positions in AlaGly (inset).  Question marks represent parts of the compound 

that could not be elucidated with the HSQC experiment.  
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The TOCSY experiment was followed by an HMBC experiment (Figure 2.8a), which 

showed the through-space correlation of the methyl and methine resonances with a 

carbonyl carbon, which also correlated with a resonance consistent with a methylene 

group.  An HSQC experiment (Figure 2.9a) confirmed the presence of a methylene 

group.  Predicted 1H and 13C NMR spectra for AlaGly closely matched the chemical 

shifts observed in the rice extract.  The assignment of the doublet at 1.55 ppm to AlaGly 

was confirmed by spiking a tissue extract with a racemic AlaGly standard and by 

comparison of the HMBC (Figure 2.8b) and1H-13C HSQC (Figure 2.9b) spectra of the 

unspiked extract and the standard.  

Analysis of AlaGly normalized integrals during the short-term submergence 

experiment did not reveal a significant difference between the rice varieties as a 

consequence of submergence or de-submergence (Figure 2.5, Tables 2.1 and 2.2).  

AlaGly levels decreased during submergence and showed no sign of return to pre-stress 

levels after 24 h of recovery (Figure 2.5). The lack of AlaGly recovery upon 

desubmergence was notably distinct from the behavior of the amino acids and 

carbohydrates mentioned above.  

D-Alanylglycine (D-AlaGly) was previously detected in rice leaf blades.40  

Additional experiments, using axenic treatment to ensure all organisms that could 

contribute D-amino acids or peptides were absent from the growth medium, revealed that 

D-AlaGly was indeed produced by the plant.41  It was subsequently confirmed by 

Manabe and co-workers that D-AlaGly accumulation was limited to shoot tissue and 

required growth in light.41   
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To our knowledge, this is the first report of the detection and identification of 

AlaGly in a plant extract by NMR spectroscopy.  Unfortunately, NMR is unable to 

distinguish between the D- and L-Ala enantiomers in AlaGly and further investigation is 

required to confirm the chirality of Ala in this dipeptide.  Our experiments showed that 

under normal growth conditions, AlaGly was present in greater amounts than Ala  

in both varieties studied (Figure 2.1, Figure 2.5).  During submergence stress, AlaGly 

levels decreased significantly and were not restored during the 1 d recovery period. No 

difference in relative AlaGly levels was observed between the two genotypes at any time 

point assayed.  Because the submergence treatment was carried out under low-light 

conditions to simulate agricultural flooding, the reduction in AlaGly levels is consistent 

with the findings reported by Manabe.42  During the 1 d recovery period, however, 

AlaGly levels were not observed to return to pre-submergence levels although light levels 

were higher and photosynthetic activity presumably increased.  If AlaGly accumulation is 

directly related to photosynthesis, a difference between the two varieties after 24 h of 

recovery might be expected because of the better maintenance of chlorophyll content6 

and increase in glucose accumulation in the M202(Sub1) variety (Figure 2.5), which is 

likely to correspond to a greater capacity for photosynthesis upon de-submergence.   

2.4 Conclusions 

This study demonstrates the differential regulation of several metabolic pathways 

by the genetic determinant of submergence tolerance, SUB1A.  Although previous studies 

have indicated differences in regulation of bulk carbohydrates and transcripts associated 

with metabolism in the M202(Sub1) and M202 varieties,6, 4, 5 untargeted-metabolic 
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analysis has not yet been reported for these varieties.  Our findings support the hypothesis 

that SUB1A invokes a quiescence strategy during submergence that limits the 

consumption of energy reserves to fuel shoot elongation growth.  Consistently, 

accumulation of amino acids synthesized from glycolytic intermediates and pyruvate 

occurred to a lesser extent in M202(Sub1) under submerged conditions.  Furthermore, 

metabolic regulation by SUB1A was evident upon de-submergence, indicating that the 

stress induced upon re-oxygenation is also affected by the presence or absence of the 

SUB1A gene as indicated by Fukao et al. (2011).43  We also identified fluctuation in 

SMM accumulation during submergence stress and recovery.  Although SMM 

accumulated equally in both varieties of rice, SMM can be connected to ethylene 

production, which is directly involved in SUB1A gene regulation in submergence tolerant 

rice and promotion of elongation growth in submergence intolerant rice.44, 6 The utility of 

NMR for metabolic profiling was also demonstrated by the identification and 

characterization of AlaGly.  NMR provides a non-destructive method for characterization 

of unknown and the identification of the unexpected metabolite AlaGly could have been 

much more difficult using alternative methods of analysis.   

 In chapter 3, the metabolome of the same vegetative rice tissue samples examined 

in this chapter are explored by GC-MS to achieve a deeper understanding of central 

carbon metabolism and energy production during and after submergence stress.  

Additionally, the differences and similarities between the results obtained using NMR 

and GC-TOF-MS are also examined demonstrating the benefits of applying multiple 

analytical techniques in metabolomics experiments. 
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CHAPTER THREE 

Comparison of GC-MS and NMR for Metabolite Profiling of Rice Subjected to 

Submergence Stress 

Based on a paper published in Journal of Proteome Research 

J. Proteome Res. 2013, 12, 898-909 
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Abstract:   

In this chapter, a comparative analysis of GC-MS and 1H NMR results was conducted for 

M202 and M202(Sub1) rice plants stressed by up to 3 days of submergence and allowed 

1 d of post-submergence recovery.  Most metabolomics studies are conducted using a 

single analytical platform.  Each platform, however, has inherent advantages and 

disadvantages that can influence the analytical coverage of the metabolome. In this work, 

a more thorough analysis of the plant stress response was possible through the use of both 

1H NMR and GC-MS results. Several metabolites, such as S-methyl methionine and the 

dipeptide alanylglycine, were only detected and quantified by 1H NMR.  The high 

dynamic range of NMR, compared with that of the GC-TOF-MS instrument used in this 

study, provided broad coverage of the metabolome in a single experiment.  The 
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sensitivity of GC-MS facilitated the quantitation of sugars, organic acids, and amino 

acids, some of which were not detected by NMR, and provided additional insights into 

the regulation of the TCA cycle.  The combined metabolic information provided by 1H 

NMR and GC-MS was essential for understanding the complex biochemical and 

molecular response of rice plants to submergence and recovery. 

 

3.1 Introduction 

In Chapter 2, we reported the results of a 1H NMR metabolomics study of extracts 

of M202 and M202(Sub1) seedlings designed to probe metabolic reconfiguration as result 

of up to 12 d of complete submergence and during a 1 d post-submergence recovery 

period.  The NMR spectra of the intolerant M202 plants reflected the rapid consumption 

of sucrose following submergence (Figure 2.2).1  Compared with the controls, initial 

glucose levels for the intolerant variety rose dramatically and then gradually decreased 

over the 3 d submergence period (Figure 2.2, Table 2.1).  A corresponding increase in 

other metabolites associated with pyruvate and glucose metabolism including alanine 

(Ala), threonine (Thr), valine (Val), leucine (Leu), and other amino acids was also 

observed (Figure 2.5).  These NMR results corroborated the increased carbohydrate 

consumption associated with the escape response of submerged M202 plants. In contrast, 

in experiments with the submergence tolerant M202(Sub1) variety, the extent of 

carbohydrate consumption and resulting amino acid accumulation was less dramatic, 

reflective of the quiescence strategy associated with rice varieties containing the SUB1A 

gene.     
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S-methyl methionine (SMM) was identified in the 1H NMR spectra of extracts of 

both rice varieties (Figure 2.5).2, 1  SMM levels decreased significantly over the course of 

the experiment, although no significant difference was observed for the two genotypes 

investigated.  SMM has been implicated as a possible regulator of ethylene biosynthesis 

as well as in sulfur transport and methionine storage.3, 2, 4, 5  The 1H NMR resonances of 

the dipeptide alanylglycine (AlaGly) were also detected in the spectra of extracts of both 

tissue types (Figure 2.7-2.8).  Although differences in AlaGly content in the two varieties 

were not evident during submergence, the dipeptide was one of the more abundant 

metabolites detected.  A GC-MS study of the metabolism of rice (Oryza sativa cv. 

Amaroo) embryos under aerobic and anaerobic germination conditions (dark, 30 C) 

failed to report detection of either SMM or AlaGly.6  The same report describes stress-

induced changes of a variety of organic acids and tricarboxylic acid (TCA) cycle 

intermediates that were not detectable in our 1H NMR experiments.6  To rationalize the 

differences in metabolites reported in these two studies, this work compares the results of 

the independent yet complementary 1H NMR and GC-MS techniques in profiling the 

response of the commercially grown submergence intolerant M202 and to that of the 

cross-bred submergence tolerant M202(Sub1) rice variety under normal growth 

conditions, submergence stress, and recovery following submergence.  In addition, 

through a comparative analysis of both genotypes, a better understanding of the relative 

attributes of 1H NMR and GC-MS for metabolomics studies can be discerned. 
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3.2 Materials and Methods 

3.2.1 Materials and Reagents 

N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) in 1% 

trimethylchlorosilane for metabolite derivatization was purchased from Thermo Fisher 

Scientific (Waltham, MA).  Fatty acid methyl esters (FAMEs) for use as retention index 

markers and methoxyamine hydrochloride (MeOX) were purchased from Supelco 

(Sigma-Aldrich Corp, St. Louis, MO).  Metabolite standards were purchased from 

Sigma-Aldrich, Fisher Scientific (Pittsburgh, PA), and MP Biomedicals (Solon, OH).  

Water (18 MΩ/cm) was obtained using a Millipore filtration system (Millipore, Billerica, 

MA).  Pyridine (+99% purity) was purchased from Acros Organics (Thermo Scientific, 

West Palm Beach, FL).  Chloroform, obtained from Mallinckrodt Laboratory Chemicals 

(Phillipsburg, NJ), and methanol (Fisher Scientific) were of at least ACS grade.   

3.2.2 Growth Conditions and Plant Materials 

Oryza sativa ssp. japonica cv. M202 and cv. M202(Sub1) were grown and 

stressed for up to 3 d as described by Fukao, et al. and Barding, et al (Chapter 2.2.3).7, 1 

Surface sterilization of the seeds was accomplished with 0.2% Tween-20 and 1% sodium 

hypochlorite, after which the seeds were rinsed thoroughly with deionized (DI) water.  

Seeds were soaked in the dark overnight in DI water and germinated on moist paper in a 

Pyrex dish covered with plastic wrap for 5 d.  Germinated seeds were transplanted into 10 

cm x 10 cm pots with soil (25 plants per pot) and grown until the 3-leaf stage (12 days) at 

30 °C in a greenhouse at ambient light and temperature.  Transplanted seeds were 
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fertilized with Peters Excel 21-5-20 liquid fertilizer.  The seedlings had a survival rate 

greater than 99%. 

3.2.3 Submergence Stress and Plant Harvest 

Submergence stress was carried out in six 121 L trash cans containing DI water to 

minimize water salinity and equilibrated overnight to the ambient greenhouse 

temperature.  Once the seedlings matured to the 3-leaf stage, they were submerged for 0 

(initial control), 1, 2, or 3 d or subjected to 3 d submergence and 1 day recovery.  A 3d 

submergence stress was chosen as this duration allows complete recovery of both 

genotypes. For the recovery sample, plants were desubmerged and placed on the 

greenhouse bench for 24 hr prior to harvesting.  Submerged plants were removed from 

the trash cans and aerial tissue immediately harvested, rinsed in DI water, flash frozen in 

liquid nitrogen and stored at -80 °C.  Control tissue was treated similarly, including a DI 

water rinse prior to flash freezing.  Harvesting of all plants occurred at 1 p.m.  Following 

harvest, samples were ground by mortar and pestle under liquid nitrogen to a fine 

powder, lyophilized overnight until dry, and stored at -80 °C.  There were four biological 

replicates for each treatment, with each biological replicate consisting of a homogeneous 

tissue pool from the plants in one pot (n=25). Aliquots of each tissue pool were also 

analyzed using 1H NMR as described in Chapter 2.1  

3.2.4 Tissue Extraction 

Metabolite extraction was carried out using 10 mg dry weight of lyophilized 

tissue with modification of the previously described method (Chapter 2.2.4.2).1  Briefly, 

the dried tissue was extracted with 1.0 mL 80/20 MeOH/H2O extraction solvent in a 1.5 
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mL Eppendorf microcentrifuge tube.  The samples were agitated for 1 min at 300 rpm 

using a platform shaker and centrifuged at 12000 x g for 4 min.   A 50 L aliquot of 

supernatant was transferred to a 350 L glass GC flat bottom insert (Phenomenex, 

Torrence, CA) in a 1.5 mL Eppendorf tube and centrifuged under vacuum overnight 

using a Thermo-Savant SC110 model speed vacuum equipped with an RVT400 

refrigerated vapor trap attached to a GP110 gel pump.  Dried extracts were stored at -

20 °C until derivatization for GC-MS analysis. 

3.2.5 Sample Preparation 

Dried metabolite extracts were treated according to Lee and Fiehn.8  To each glass 

insert, 10 µL of 40 mg/mL MeOX in pyridine was added and the sample was shaken at 

30 °C for 90 min.  This was followed by addition of 4 µL from a standard mixture of 

FAMEs of a linear carbon chain length C8, C9, C10, C12, C14, C16, C18, C20, C22, 

C24, C26, C28, and C30.  The standard mixture of FAMEs was prepared in chloroform 

with a C8-C16 concentration of 0.8 mg/mL and a C18-C30 concentration of 0.4 mg/mL.  

Samples were allowed to react with 90 µL of MSTFA at 37 °C for 30 min, after which 

the glass inserts were transferred directly to a wide-mouth crimp top vial (Phenomenex) 

and sealed with an 11 mm crimp cap.  Samples were analyzed within 24 h of 

derivatization. 

3.2.6 Sample Injection and Gas Chromatography 

An Agilent 7683B Automatic Liquid Sampler equipped with a 10 µL Agilent 

syringe (Agilent Technologies, Santa Clara, CA) was used to inject 1 µL of derivatized 

sample, after which the syringe was cleaned 3 times in methylene chloride in preparation 
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for the next injection.  The sample was injected into a splitless, single tapered MS-

certified injector liner with glass wool (Agilent Technologies) heated at 230 °C and 

changed every 25 samples to ensure efficient analyte transfer to the GC column.  The 

injector was operated in pulsed splitless mode with helium (99.998% purity, CalTool, 

Riverside, CA) pressure ramped to 35.0 PSI for 0.5 min, after which the flow was 

reduced and maintained at 1 mL/min for the duration of the separation.  The separation 

was carried out using an Agilent 7890A gas chromatograph equipped with an Rtx-5sil 

MS column, 0.25 mm i.d. and 30 m length with an additional 10 m integrated guard 

column.  The sample was introduced at an initial oven temperature of 60 °C held for 1 

min, ramped at 10 °C/min to a final temperature of 320 °C, and held for 5 min.  The total 

run time was 32 min.   All instrument operations were controlled by Waters MassLynx 

software version 4.1 (Waters Corporation, Milford, MA).   

3.2.7 Mass Spectrometry Data Acquisition and Analysis 

The sample was introduced from the GC to the MS at a transfer line temperature 

of 320 °C.  Electron impact ionization was used at 70 eV with a source temperature of 

220 °C.  The filament was turned on after 6.5 min and mass spectra were recorded from 

m/z 50 to 600 at a rate of 10 spectra s-1. The detector was operated at 2700 V.  An 

additional solvent delay was incorporated starting at 24.7 min and ending at 25.0 min to 

prevent ionization of sucrose, which is present at high abundance and would saturate the 

detector.  Data were collected without the use of the dynamic range enhancement feature 

of the Waters GCT Premier to avoid compromising deconvolution and integration of the 

highly complex chromatograms.  The data were collected and stored in Waters file format 
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(*.raw). Data were converted as collected from Waters file format to *.cdf format for 

processing with the Automated Mass Spectral Deconvolution and Identification System 

(AMDIS, NIST, Gaithersburg, MD).  Deconvolution settings used a component width of 

17 scans, high resolution, high sensitivity, and medium shape.  Retention indices (RI’s) 

were calculated for each sample by AMDIS using an internal standard library and 

calibration standard library.  For compound identification, AMDIS queried the NIST 08 

Mass Spectral Library.  All compound identities were confirmed with RI and MS data 

obtained from the Golm Metabolome Database or checked against an in-house library 

generated using metabolite standards.9 

 MarkerLynx XS (Waters Corporation) was used for data preprocessing to collect 

integration values for identified metabolites.  Peaks were detected without smoothing 

from an initial retention time of 7.00 min and final retention time of 32.00 min, with a 

low-mass cutoff of 73.5 Da, a high-mass cutoff of 600 Da, and a mass accuracy of 0.10 

Da.  The peak width at 5% was overestimated as 2 sec to ensure peak detection. A peak-

to-peak baseline noise value of 1.0, a marker intensity threshold of 25 counts, and a mass 

and retention time window of 0.1 Da/min were also used.  A noise elimination level of 

3.0 was chosen and data was deisotoped.  The results were exported to Excel (Microsoft, 

Redmond, WA) where the retention times and the extracted masses were matched with 

identified metabolites.  One mass-retention time pair with the corresponding area for each 

metabolite was taken for data normalization and statistical analysis.  The mass-retention 

time pair with the highest relative abundance was chosen to represent each metabolite 

(excluding the silylation-related fragments 73 and 147 m/z). 
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3.2.8 Statistical Analyses 

The data were normalized by dividing the area of the individual components by 

the summed area for all the identified metabolites as described by Lee et al.8 P-values 

were calculated in Excel using a 2-tailed Student’s t-test comparing inter- and intra-

genotype differences as a result of submergence stress or recovery.  The GC-MS results 

for one member of the M202(Sub1) 1 day recovery (1R) sample set were excluded from 

the statistical analysis due to poor sensitivity and presence of peaks inconsistent with the 

rest of the data set. Trajectory plots were prepared with Origin 7.5 (OriginLab, 

Northampton, MA) using the average and standard deviations determined for each 

treatment. The integrated, sum-normalized area of mass-retention time pairs from the 

identified metabolites was used for principal components analysis (PCA) carried out with 

Minitab 15 (Minitab, Inc., State Park, PA) after mean-centering in Excel.    

3.3 Results and Discussion 

This study examines the differences in the GC-MS metabolic profiles measured 

for extracts of M202 and M202(Sub1) seedlings subjected to control, submergence stress 

and recovery conditions.  These GC-MS results are then compared to the metabolic 

response observed for these genotypes with 1H NMR, as described in Chapter 2.1 In both 

sets of experiments aliquots of the same tissue samples were extracted and analyzed. 

Figure 3.1 shows a region of the representative total ion chromatograms (TICs) 

measured for M202 rice extracts comparing the results for control, 3 d submergence, and 

1 d post-submergence recovery samples.  Several organic and amino acids are detected in 

this region of the TIC including aspartate (Asp), γ-aminobutyric acid (GABA), glycerate,  
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Figure 3.1 Representative GC-MS total ion chromatograms for the M202 variety a) 

control (day 0), b) 3 d submergence, and c) 3 d submergence + 1 d post-submergence 

recovery.  Identified metabolites are labeled. 
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glycine (Gly), isoleucine (Ile), malate, pyroglutamate, serine (Ser), succinate, threonine 

(Thr), and threonate.   Differences in relative metabolite abundance as a consequence of 

treatment are evident by visual inspection of Figure 3.1, with some peaks increasing in 

intensity, others decreasing, and some appearing to remain unchanged. 

3.3.1 Metabolomics Analyses of the Stress Response 

Global analysis of the metabolic changes due to submergence and recovery 

stresses was performed by PCA (Figure 3.2).  PC1 and PC2 represent 63.1% and 17.9%, 

respectively, of the explained variance with distinct groupings observed for the two 

varieties during stress conditions.  In the absence of stress the control treatments do not 

separate based on genotype in the PCA scores plot (Figure 3.2a).  Within 1 d of 

submergence stress, both genotypes cluster to the right of the controls along PC1, 

whereas the tolerant and intolerant varieties differ along the second component.  The 

distinction between M202 and M202(Sub1) in Figure 3.2a remains consistent over the 

course of the treatment, with the sample trajectory moving further along PC1 with 

duration of submergence and with the two varieties maintaining their separation in PC2.  

The data for the tissue samples after 1 d of recovery shift back towards the controls. The 

1 d recovery samples of the submergence-tolerant M202(Sub1) variety cluster with the 

controls while the intolerant M202 samples are clustered below, well-separated from the 

controls in PC2.   

Overall, the GC-MS PCA results in Figure 3.2 are consistent with the previously 

reported PCA analysis of the 1H NMR data (Figure 2.4),1 however there are fundamental 

differences between the two datasets that can be attributed to several factors.  PCA of the  
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Figure 3.2  Scores plot (a) showing principal components 1 and 2. The legend identifies 

the individual treatments for the M202 variety. The same scheme but with open symbols 

was used to represent the M202(Sub1) samples. The loadings plot (b) shows the variables 

that contributed most to the variance along the first and second principal components.  
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NMR data used over 300 variables generated by integrating “bins” of the NMR spectrum 

in equidistant sections allowing use of the entire spectrum, with the exception of solvent 

peaks. As a result, more NMR variables were available to define the differences between 

the data sets.  PCA of the GC-MS results was conducted only with the identified 

variables because unidentified peaks can result from derivatization side reactions. The 

variables representing the largest separation along PC1, PC2, or in both dimensions (e.g. 

citrate and shikimate) are clearly identified as important in the loadings plot (Figure 

3.2b).  Metabolites that contribute to separation primarily along PC1 are Asp, glutamate 

(Glu), Ile, Ser, Thr, and tyrosine (Tyr).  Contributions to PC2 can be attributed to Ala, 

Gly, myo-inositol, and pyroglutamate.  Despite the distinct grouping of the two varieties 

in Figure 3.2a, PCA is unable to define statistical differences or quantitative relationships 

between the varieties during stress.  This level of information requires a direct 

comparison of the results obtained for each metabolite in samples measured at the 

different stress time points.  

3.3.2 Metabolite Profiles Determined by GC-MS 

The differences between metabolite levels in the two genotypes were examined to 

better understand the metabolic shifts resulting from submergence and recovery. 

Metabolite profiles for the control, submergence and recovery treatments were measured 

using GC-MS for 17 amino acids, 7 organic acids, myo-inositol, and trehalose and are 

summarized in the trajectory plots shown in Figure 3.3.  These differences are also 

apparent in Table 3.1, which examines the fold changes of individual metabolites over 

time within and between genotypes.   
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Figure 3.3.  Trajectory plots from the GC-MS results representing the average 

normalized relative peak areas for M202 (■) and M202(Sub1) (●). Time points are 

connected using solid (M202) or dotted (M202(Sub1)) lines. Treatments are labeled as 1 

d control (1dc), 1d, 2d, 3d submergence and 3d submergence + 1d post-submergence 

recovery (1R).  Each data point represents the average of at least three biological 

replicates with error bars representing the standard deviation and asterisks indicating 

differences between then genotypes with a P-value < 0.05.   
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Table 3.1.  A comparison of the treatment and control levels of metabolites as represented by fold changes for M202 and M202(Sub1) 

relative to the controls, and between the two varieties for each treatment condition.  Asterisks represent significant differences at the 95% 

confidence limit.  ND represents metabolite ratios that are not determined due to values below the limit of quantitation. 

 

 M202 M202(Sub1) M202/M202(Sub1) 

 1d:1dc 2d:1dc 3d:1dc 1R:1dc 1d:1dc 2d:1dc 3d:1dc 1R:1dc 1dc 1d 2d 3d 1R 

Sugars              

Trehalose 0.4* ND ND 0.9 0.4 ND ND 0.8 0.9 ND ND ND 0.6 

Amino Acids              

Ala 2.1* 7.0* 8.7* 4.7* 1.9 3.3* 5.2 0.8 1.4 1.5* 3.0* 2.3* 8.3* 

Asn ND ND ND ND ND ND ND ND ND 0.8 3.5 2.8* ND 

Asp 1.1 1.7* 2.1* 1.1 2.0 2.3* 2.6* 0.4 1.2 0.7* 0.9 1.0 3.0* 

Gln ND ND ND ND ND ND ND ND ND ND ND ND ND 

Glu 1.0 1.4* 1.5* 1.1 2.2* 2.7* 2.6* 1.1 1.8* 0.9 1.0 1.0 1.9* 

Gly 0.2* 0.4* 0.4* 2.5* 0.5 0.5 0.7 1.0 1.8 0.8 1.4 1.1 4.6* 

Ile ND ND ND ND ND ND ND ND ND 0.9 1.7 1.8* ND 

Leu ND ND ND ND ND ND ND ND ND 0.9 1.3 1.5 ND 

Lys ND ND ND ND ND ND ND ND ND 0.9 2.3 1.9 3.3 

Phe ND ND ND ND ND ND ND ND ND 0.7 1.3 1.4 ND 

Pro ND ND ND ND ND ND ND ND ND ND ND ND ND 

Ser 1.7* 2.4* 2.7* 1.0 2.9* 3.2* 3.1* 0.4 1.7 1.0 1.3 1.5 4.4* 

Thr ND ND ND ND ND ND ND ND ND 0.9 1.7 1.8* ND 

Tyr ND ND ND ND ND ND ND ND ND 0.8 1.6 1.6* ND 

Val ND ND ND ND ND ND ND ND ND 1.0 1.6 1.8* ND 

Pyroglutamate 0.3* 0.8 1.2 1.2 0.4 0.5 0.7 0.3 1.0 0.7 1.6 1.8* 3.6* 

Organic Acids              

Citrate 2.0* 1.9* 2.0* 0.8 2.0* 2.2* 2.2* 1.0 0.9 0.9 0.8* 0.8 0.7 

Glycerate 0.3* 0.2* 0.1* 0.7* 0.3 0.1 0.1 1.1 1.2 1.2 1.5 1.3 0.8 

GABA ND ND ND ND ND ND ND ND ND 1.1 1.3 1.1 ND 

Malate 0.8* 0.8* 0.9 0.9 0.9 0.8 0.9 1.1 0.9 0.8* 1.0 1.0 0.8 

Oxalate 0.6* 1.0 1.2 1.0 1.6 1.9* 1.4 1.1 2.4* 1.0 1.3 2.2 2.2* 

Shikimate 0.9 0.7* 0.5* 0.6* 0.9 0.7 0.6 0.7 0.9 0.9 0.8* 0.7 0.7* 

Succinate 1.2 1.9* 2.7* 1.8* 2.9* 1.2 1.6 1.9 1.5 0.6 2.3 2.4* 1.4 

Threonate 1.4 1.1* 1.1 1.2 1.7* 1.5 1.3 1.3 1.3 1.1 0.9 1.0 1.1 

Other Metabolites              

Myo-Inositol 0.8 0.9 0.7* 0.7* 1.2 1.2 1.0 0.8 1.2 0.8 0.9* 0.9 1.1 
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Similar to what was previously reported by 1H NMR (Figure 2.5, Table 2.1),1 the 

GC-MS analysis presented in Figure 3.3 shows that 15 of the 17 detected amino acids 

also accumulated during submergence and showed a return toward pre-treatment values 

after 24 hr of recovery.  Significant differences (P value  0.05) between the genotypes 

were evident in the levels of 11 of the 17 detected amino acids either at some time point 

of the submergence treatment or after 24 hr recovery (Table 3.1). Amino acid metabolism 

reflects a stress response involving pathways related to elevated carbon catabolism 

through glycolysis and nitrogen utilization.  Amino acids accumulated in both varieties 

during submergence stress however this trend was more prominent for the intolerant 

variety, supporting the previous observation that M202 has higher levels of starch 

consumption and sugar catabolism to generate ATP to fuel underwater elongation 

growth.   

In contrast to the behavior of the majority of the amino acids, Gly levels in the 

intolerant variety increased 2.5 fold above non-stressed levels during recovery after re-

oxygenation (Figure 3.3, Table 3.1).  Gly is directly related to the metabolism of several 

amino acids, including Ser and Thr and the increase in Gly levels could result from the 

recycling of these amino acids.10 However, the tolerant variety also accumulates Ser and 

Thr during submergence, although at lower amounts, and does not show a corresponding 

increase in Gly after 24 hr recovery.  The stasis of Gly in samples of M202(Sub1) for all 

treatment conditions examined supports the assertion that increases in Gly levels in M202 

may be a mechanistic response to re-oxygenation/dehydration stress.  Because re-

oxygenation and dehydration stresses are affected by the presence of SUB1A and 
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SUB1A-containing varieties are more tolerant to dehydration, the observation in Figure 

3.3 that Gly does not increase during recovery in the tolerant cultivar could be associated 

with the better re-oxygenation tolerance of this genotype.  This is consistent with reports 

of Gly accumulation in other plants as a result of increased photorespiration during 

dehydration.11    There may be other reasons for this distinction in Gly accumulation 

during submergence recovery. A recent report suggests that Gly can act as a ligand for 

ligand-mediated gating of calcium in plants.12  Calcium signaling is important for a 

variety of plant stress responses, including synergistic control of stomata opening with 

abscisic acid13 and increased production of alcohol dehydrogenase, a key enzyme in 

anaerobic metabolism, during oxygen deprivation.14, 15  Alternatively, Gly accumulation 

observed in the M202 samples is not a result of the catabolism of pathway-related 

metabolites but instead a response to re-oxygenation or dehydration stresses experienced 

by plants after prolonged submergence.16   

Pyroglutamate is an uncommon amino acid related to glutathione metabolism and 

also commonly found at the N-termini of proteins.17, 18 In both rice varieties, 

pyroglutamate levels decrease during the first day of submergence (Figure 3.3). Over the 

subsequent 2 days, levels of pyroglutamate in M202 return to pre-stress levels while in 

M202(Sub1) they remain lower than for the controls for the duration of the study, 

including the recovery period.  This divergence in pyroglutamate levels for the two 

varieties could be indicative of differences in glutathione metabolism or protein turnover.  

Energy production is a key component of plant survival, especially under 

submergence conditions where photosynthesis can be dramatically reduced as a result of 
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limited diffusion of carbon dioxide.19  As a result of submergence stress, significant 

differences between the two genotypes were observed in the levels of the detected TCA 

cycle intermediates and components of related pathways (Figure 3.3). For the intolerant 

variety citrate, GABA, and succinate increased in abundance throughout the course of 

submergence and then decreased after re-oxygenation.  Interestingly, citrate and succinate 

exhibited differing trends over the 3 d submergence treatment.  After an initial 

accumulation within the first day of submergence, citrate plateaued and subsequently 

decreased upon re-oxygenation.  Succinate gradually accumulated, with an apex at day 3 

of submergence before decreasing during re-oxygenation.  In contrast, malate decreased 

during the first day of submergence while the re-oxygenation time point is inconclusive 

due to high variance.  The sudden accumulation and plateau of citrate without detecting a 

corresponding increase in isocitrate or α-ketoglutarate suggests that either the TCA cycle 

is regulated at citrate or that the flux through the subsequent intermediates is fast.  The 

gradual increase of succinate, however, suggests a non-circular pathway for the TCA 

cycle through 2-oxoglutarate or oxaloacetate. Both are produced in the metabolism of 

pyruvate and Glu to Ala. GABA, which also gradually accumulates during stress is 

generated from 2-oxyoglutarate and has been reported to be produced during anaerobic 

metabolism.20  GABA is also part of the photorespiration pathway, producing succinic 

semialdehyde, Gly, and Ala corroborating the accumulation of Gly in the intolerant 

variety.21 The lack of change in Gly for the tolerant variety is still puzzling.  The 

production of Gly requires glyoxylate which was not monitored in this study.  Monitoring 

glyoxylate production in the two rice varieties as well as flux studies could provide a 
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better understanding of this difference in Gly production in the two rice varieties.  

Interestingly, succinate accumulation trends follow a similar trajectory as Ala and the 

other detected TCA cycle intermediates (Figure 3.3).  In addition, the reduction of malate 

levels during submergence suggests a slowing of the TCA cycle, supporting the 

regulation of the TCA cycle at citrate and the accumulation of succinate through 

alternative pathways.  Malate could also be converted to pyruvate possibly providing 

additional means of carbon storage during oxygen stress, however flux analysis is 

necessary to fully understand the role of the detected TCA cycle intermediates.22 The 

results obtained for the TCA intermediates argue for future flux experiments. Since these 

experiments are complex and require expensive stable isotope labeled compounds, 

advance knowledge of the pathways of interest is critical to their success. 

Although the trends for citrate and GABA in the tolerant variety are similar to 

those observed for M202, the disparity between the genotypes is evident in the time 

course plots for these TCA-related metabolites (Figure 3.3).  Succinate increased 

drastically in M202(Sub1) samples after the first day of submergence, decreased back to 

initial levels after 2 d and then remained unchanged.  The accumulation of succinate in 

M202 was 2.4 times that of M202(Sub1) by 3 d (Table 3.1), however, no statistically 

significant differences between the varieties were observed at the other points examined.  

Citrate and malate differed from other metabolites in that levels in M202(Sub1) were 

higher than those measured for the intolerant variety.  The first day of submergence 

resulted in 0.8 times less malate for the intolerant variety compared to the tolerant 

variety.  Similarly, citrate was 0.8 times less abundant in M202 compared to levels in the 
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M202(Sub1) samples (Table 3.1).  Although these were the only time points where 

statistically significant differences (P value  0.05) between the two varieties were 

observed, this general trend is consistent throughout the course of the experiment.  The 

higher levels of the TCA cycle intermediates detected in the tolerant variety could reflect 

the greater photosynthetic capacity of M202(Sub1) due to the presence of more 

chlorophyll during submergence as reported by Fukao et al.16, 7 

   Despite the sensitivity of GC-MS measurements we were unable quantify the 

sugars sucrose, glucose and fructose due to the method selected and the nature of the 

time-of-flight (TOF) instrument available for this work.  Sucrose is the primary 

metabolite in rice extracts, dominating the other metabolites by a significant margin.  

NMR is able to accommodate a ~ 106 dynamic range compared to 104 for the Waters 

GCT Premier when using dynamic range enhancement feature, which was not employed 

in this study.23, 24 To observe the less abundant compounds and take full advantage of the 

sensitivity of our GCT Premier TOF instrument, we did not attempt to quantify these 

soluble sugars (glucose, sucrose, and fructose) because of detector overload at the 

concentrations necessary to adequately quantify other metabolites.  Also, because sucrose 

and glucose were easily quantified using 1H NMR, there was not a strong motivation to 

attempt to measure these analytes by GC-MS Figure 2.2).  However, glyceric acid, a 

sugar alcohol, and trehalose were detected by GC-MS and observed to decrease during 

submergence in both genotypes.   During submergence, trehalose levels drop below the 

limit of quantification, preventing a metabolic comparison of the genotypes.  The 
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metabolite profiles for glyceric acid in M202 and M202(Sub1) are indistinguishable 

suggesting that the levels of this compound are not impacted by the presence of SUB1A.   

Narsai et al. explored the anaerobic germination of Oryza sativa cv. Amaroo (also 

a japonica sub-species) using a variety of “-omics” techniques, including metabolite 

profiling by GC-MS.6  They reported changes in 166 metabolites during the course of 

their experiment, which is significantly more than the 30 metabolites reported in this 

study in both the NMR and GC-MS datasets (Table 3.2).  There are several possibilities 

that might explain the different numbers of metabolites observed in these two studies.  

Plant growth stage at the time of harvest greatly influences the numbers of detected 

metabolites.25 The anoxia study performed by Narsai et al. examined embryos grown in 

the dark in either anaerobic or aerobic conditions and separated from the endosperm 

within a few days of germination.6  The study reported herein used seedlings sampled 

within 17 days after germination (12 days after planting) and grown under aerobic 

conditions until submergence stressed.  Several reports have indicated that metabolic 

content varies during plant and fruit development, especially during the germination and 

development of young plants.26, 25, 27, 28  The experiments of Narsai et al. were also 

performed using a different rice variety than used in this study.6   Using GC-MS and 1H 

NMR we have shown significant metabolic differences as a result of submergence stress 

for two varieties differing in the presence or absence of a single gene, SUB1A.1  

Differences between cultivars can be much more significant, resulting in a wider range of 

metabolites produced in response to anaerobic stress.   
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Table 3.2.  Metabolites quantified by GC-MS and NMR.  The “X” denotes detection of 

the metabolite by NMR, GC-MS, or both instruments. 

 

Metabolites  NMR  GC-MS  

Sugars    

Glucose  X    

Sucrose  X    

Trehalose   X  

Amino Acids   

Ala  X  X  

Asn  X   

Asp  X  X  

Gln  X  X  

Glu  X  X  

Gly   X  

Ile  X  X  

Leu  X  X  

Lys  X 

Phe   X  

Pro   X  

Pyroglutamate   X  

Ser  X  X  

SMM  X   

Thr  X  X  

Tyr  X  X  

Val  X  X  

Organic Acids    

Citrate   X  

Glycerate   X  

GABA  X 

Malate  X  

Oxalate   X  

Shikimate X X 

Succinate   X  

Threonate   X  

Other Metabolites    

AlaGly  X   

Myo-Inositol   X  
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Finally, the greater number of metabolites reported by Narsai et al. could be attributed in 

part to the quadrupole mass analyzer used in their study which has a wider linear 

quantitation range than our TOF instrument.29  However, despite the greater number of 

metabolites detected in their study, neither SMM nor AlaGly, which we detected using 

1H NMR, were reported by Narsai and co-workers.   

3.3.3 Comparison of the GC-MS and NMR Results 

Because of the fundamental differences in the nature of GC-MS and NMR 

measurements, the results obtained using each platform contributed to our understanding 

of the complex metabolic response of rice to submergence stress.  Table 3.2 lists the 

metabolites quantified in this study and the instrument used for their measurement.  In 

total, four metabolites: sucrose, glucose, AlaGly, and SMM, were exclusively quantified 

by NMR.1 Fourteen metabolites including several organic acids, TCA cycle 

intermediates, and amino acids were exclusively quantified by GC-MS, and 11 

metabolites were determined by both instruments.  Increased signal averaging could have 

been used to improve the sensitivity of NMR quantitation of the less abundant 

metabolites, however, this approach rapidly becomes impractical because improvement 

in S/N is proportional to the square root of the number of co-added transients.30, 23 

Furthermore, several compounds that were detected by GC-MS were not observed in the 

NMR spectrum due to problems of resonance overlap, for example the Gly resonance 

which is obscured by the more intense sucrose resonances. 

The analytical and biological reproducibility of the GC-MS and 1H NMR results 

can be evaluated by comparing the metabolite trajectories obtained for overlapping 
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metabolites quantified for M202 using both instruments.  Overlaid in Figure 3.4 are 

trajectory plots from both NMR and GC-MS experiments for different extracts of the 

same samples of M202 tissue. Figure 3.5 shows a similar set of plots for M202(Sub1).  

Peak areas determined in both experiments are normalized, with the GC-MS data 

normalized to all identified metabolites (as described in section 3.2.8) and the NMR data 

sum normalized as described in Barding et al. (Chapter 2.2.6).1  A strong correlation 

between the two data sets is observed in Figures 3.4 and 3.5, with the profiles for most 

metabolites displaying similar trends throughout the course of treatment. The profiles for 

Gln and shikimate show the greatest degree of difference between the datasets.  From the 

GC-MS dataset, shikimate decreases during the course of submergence, whereas a 

decrease was not apparent in the NMR data until the 3 d time point.  Although the trends 

are similar for both datasets, the relative abundance of shikimate in the NMR data set is 

low and the resonances for shikimate appear in a crowded region of the spectrum 

complicating the deconvolution process.  In contrast, shikimate is easily detected and 

quantified by GC-MS making the measurements more reliable for qualitative and 

quantitative analysis.  The opposite was true for Gln, where it was readily quantified by 

NMR but detected in relatively low abundance by GC-MS analysis.  

Some differences between the datasets shown in Figures 3.4 and 3.5 can be 

attributed to the higher standard deviation of the GC-MS data set for those time points 

and to differences in data normalization.  Although data from both techniques were sum 

normalized, GC-MS data was normalized to the sum total of all identified components 

whereas for the NMR results the integrated areas of both identified and unidentified  
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Figure 3.4.  Trajectory plots comparing the normalized metabolic profiles measured 

using 1H NMR (○) and GC-MS (■).  Time points indicate controls (1dc), 1d, 2d, 3d 

submergence or 3d submergence followed by 1d post-submergence recovery (1R).  Each 

data point represents the averaged normalized area of at least three biological replicates 

for the GC-MS data or five biological replicates for the NMR data with error bars 

indicating the standard deviations.   
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Figure 3.5.  Trajectory plots comparing the normalized metabolic profiles measured 

using 1H NMR (○) and GC-MS (■) for the M202(Sub1) tissue.  Time points indicate 

controls (1dc), 1d, 2d, 3d submergence or 3d submergence followed by 1d post-

submergence recovery (1R).  Each data point represents the averaged normalized area of 

at least three biological replicates for the GC-MS data or five biological replicates for the 

NMR data with error bars indicating the standard deviation.   
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components were used.  Despite the minor differences observed in Figure 3.4 and 3.5, 

these results show how datasets collected by two very different analytical methods can 

also provide confidence in the validity of data pre-processing and analysis.     

For some analytes, such as Gln (Figure 3.6), differences in the NMR and GC-MS 

results can be attributed to differences in S/N. For both datasets, the Glu peak is present 

at higher intensity than Gln however, the Gln peak is of much lower relative intensity in 

the GC-MS data set and Gln was not detected in the 1 and 2 d samples. In contrast, the 

Gln resonances are readily detected in the NMR spectra for all time points evaluated.  To 

better understand the differences between the datasets, S/N was measured for the Glu and 

Gln peaks for each data set (Table 3.3). At time points where Gln was detected by GC-

MS, the S/N was ~5% that of Glu.  When measured by NMR, the S/N of Gln was 

between 20 and 70% that of Glu and Gln was always present at quantifiable levels. 

Because Gln and Glu are important in plant nitrogen metabolism,31 understanding the 

relationship between the two amino acids is important, giving 1H NMR a relative 

advantage in their quantification. 

3.3.4 Detection of AlaGly and SMM 

Previously, we reported the identification of the dipeptide AlaGly in rice extracts 

by 1H NMR analysis (Figure 2.5, 2.7-2.8).1  Interestingly, AlaGly was not reported in 

recent GC-MS-based rice metabolite profiling studies, nor is it included in publicly 

available metabolomics libraries.6, 32, 9  A cursory analysis of the GC-MS results of our 

rice extracts also failed to identify AlaGly, which contrasted with the pronounced 

intensity of AlaGly resonances in the 1H NMR spectra measured for the same tissue  
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Figure 3.6.  Stacked plots of the TICs from the GC-MS (left) and NMR (right) results 

showing the regions containing Glu and Gln.  Only data from the extracts of the M202 

variety are shown for simplicity but the data are representative of both genotypes.  The 

time points indicate a control (1dc), 1d, 2d, 3d of submergence or 3d submergence 

followed by 1d post-submergence recovery (1R). For the GC-MS data, the TIC’s are 

scaled to Glu. 
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Table 3.3: Signal to noise ratios determined from GC-MS and NMR data.  For GC-MS 

data, S/N was calculated as the root mean square (RMS) using the MassLynx 4.1 

software.  For NMR data, the S/N was calculated using the Bruker Topspin 3.1 (Bruker 

Biospin, Billerica, MA).  For noise calculation, a region of the 1H spectral baseline was 

selected between 9.0 and 9.2 ppm that was free of signals and equal in width to the signal 

region.  For each measurement, the average and standard deviation of at least 5 replicates 

for every time point are reported.  The NC represents S/N not calculated due to a  ratio 

below 10. 

 

 
  GC-MS   NMR  

 Gln Glu Gln/Glu Gln Glu Gln/Glu 

M202 1dc 24 ± 5 526 ± 129 0.05 ± 0.02 156 ± 99 287 ± 181 0.54 ± 0.02 

M202 1d NC 779 ± 137 NC 47 ± 11 207 ± 52 0.23 ± 0.02 

M202 2d NC 707 ± 69 NC 102 ± 36 287 ± 64 0.35 ± 0.08 

M202 3d NC 1206 ± 312 NC 128 ± 46 229 ± 76 0.55 ± 0.05 

M202 1R 30 ± 11 739 ± 172 0.04 ± 0.01 162 ± 68 219 ± 81 0.74 ± 0.14 
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Figure 3.7.  1H NMR spectrum (a) and GC-MS chromatogram (b) measured for extracts 

of the same M202 control rice tissue showing the differences in the response of the two 

analytical platforms for Ala and AlaGly.    AlaGly is present in greater abundance than 

Ala in this sample as judged by the relative intensity of the NMR resonances but is not 

detectable in the GC-MS TIC. The retention time indicated on the chromatogram in (b) 

shows the expected elution time based injection of an AlaGly standard.  An asterisk 

indicates the FAMEs retention index marker in (b). 
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samples.  Figure 3.7 shows a representative 1H NMR spectrum and GC-MS total ion 

chromatogram (TIC).  Because of the inherently quantitative nature of NMR, comparison 

of the relative integrals of the methyl resonances for AlaGly (1.66) and Ala (1.00) in 

Figure 3.7a provides a direct quantitative relationship of the relative concentrations of the 

two compounds in the extract.  Although GC-MS is generally considered to have greater 

sensitivity than NMR, AlaGly is not detected by GC-MS in Figure 3.7b. Because AlaGly 

could not be identified by deconvolution and library matching, a standard was derivatized 

and injected to establish the expected GC elution time for comparison with the rice tissue 

extracts. Several factors could be responsible for much lower detection sensitivity for 

AlaGly including low volatility, hydrogen bonding to the injector liner or poor 

derivatization efficiency. 

SMM is another metabolite that we readily detected by 1H NMR but did not 

observe by GC-MS analysis of rice extracts (Figure 2.5).  SMM can play an important 

role in ethylene production as well as sulfur transport and has been previously shown to 

accumulate in anoxic rice seedlings.5, 2, 3 Although NMR analysis of the submergence 

treated tissue did not reveal significant changes in the levels of SMM in the two 

genotypes, its absence from the GC-MS data was enigmatic.  The positive formal charge 

of SMM could reduce its volatility and increase its ability to bond with various parts of 

the inlet and column.  Another factor in its low sensitivity could be excessive 

fragmentation by the electron ionization (EI) source.  Comparison of the mass spectra of 

AlaGly, Ala, and SMM (Figure 3.6) reveals that AlaGly and Ala both produce the same 

major fragment ions (m/z 73, 75, and 116) with differences between the molecules 
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observable in the very low abundance ions.  In contrast, SMM is heavily fragmented, 

producing many ions at relatively high abundance with the m/z 176 ion as the most 

intense peak. 

3.4 Conclusions 

The goal of untargeted metabolomics experiments is to sample as much of the 

metabolite chemical space as possible.  As this study has shown, this is best 

accomplished using multiple analytical platforms. The GC-MS results both corroborated 

and complemented our previous NMR study.  Metabolites exclusively detected by GC-

MS analysis include the amino acids Phe, Pro, pyroglutamate, the TCA intermediates 

citrate, malate, and succinate as well as the organic acids GABA, glycerate, oxalate, 

shikimate, and threonate.  These metabolites provided additional support for carbohydrate 

regulation by SUB1A during submergence as evident through pyruvate metabolism to 

Ala, and changes in the levels of GABA, TCA cycle intermediates and other amino acids.  

Possible points of regulation of the TCA cycle and evidence for alternative, non-cyclic 

pathways were revealed by GC-MS through the rapid elevation of citric acid and gradual 

accumulation of GABA and succinate.  A possible biomarker for dehydration or re-

oxygenation stress was also evident in the intolerant variety through accumulation of Gly, 

which may affect cellular signaling pathways during the recovery period.  The increase in 

relative abundance of pyroglutamate may also be an indicator of oxidative stress during 

and after submergence due to its role in glutathione metabolism. 

 Throughputs of both platforms were comparable in terms of the time required for 

measurements and data processing, while the advantages and disadvantages of each 
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platform were complementary. NMR is inherently quantitative, universally detects 

organic compounds and has a high dynamic range. However, NMR is generally 

considered to be less sensitive than GC-MS and in the analysis of whole plant extracts it 

can be difficult to resolve signals for some compounds due to resonance overlap. 

Although GC-MS was able to detect 14 compounds not observed by NMR, three 

important metabolites Gln, AlaGly and SMM were more readily detected and quantified 

by 1H NMR. The dynamic range limitations of the TOF mass analyzer available for this 

work reduced somewhat the utility of GC-MS however the dynamic range of the 

measurements could be effectively expanded by using split injections or performing 

measurements of extracts at differing degrees of dilution.  Taken together, these results 

demonstrate that the complementary use of 1H NMR and GC-MS can facilitate a more 

thorough exploration the metabolome of the biological system in question. 

 In chapter 4, a targeted analysis of secondary metabolism is conducted on extracts 

from rice tissue.  Weak anion-exchange solid phase extraction (WAX-SPE) is used to 

select for anionic compounds in polar extracts with the purpose of specifically targeting 

phosphorylated mono- and disaccharides.   RPIP-UPLC-MS analysis is used to analyze 

the WAX-SPE eluent, allowing the identification and quantitation of several metabolites 

involved in secondary metabolism and energy utilization.  Additionally, NMR and GC-

MS analysis are combined with RPIP-UPLC-MS analysis of rice tissue to provide a more 

detailed understanding of the metabolic reconfigurations occurring during the recovery 

period following desubmergence. 
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CHAPTER FOUR 

The Effect of Re-oxygenation on the Primary and Secondary Metabolomes of 

SUB1A Containing Rice and the Quantitation of Trehalose-6-Phosphate by RPIP-

UPLC-MS 
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Abstract:  

In this chapter, NMR, GC-MS and UPLC-MS were used to interrogate the metabolic 

differences introduced the presence or absence of SUB1A in the primary and secondary 

metabolomes of the shoots of rice (Oryza sativa ssp. japonica) in response to 

submergence stress, re-oxygenation, and the diurnal cycle.  For these experiments, the 

M202 and M202(Sub1) rice varieties were submerged for 3 d at midday and allowed to 

recover until dusk, midnight, dawn, and midday 24 h post re-oxygenation.  

Simultaneously, control plants were harvested at each time point to elucidate the 

contributing effects of the diurnal cycle on the results.  Although few differences between 

genotypes were detected under control conditions, distinctions in shoot metabolite levels 

between the genotypes during re-oxygenation were observable at night for several 
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metabolites, including methionine, glycine, histidine, serine, and shikimate.  These results 

suggest that either re-oxygenation, low-light to darkness, or a combination of the two had 

a significant effect on metabolism.  Additionally, changes in the levels of trehalose-6-

phosphate (T6P), a key signaling molecule responsible for carbon sensing, was monitored 

over the course of the treatment by reverse-phase ion-pair ultrahigh performance 

chromatography – mass spectrometry (RPIP-UPLC-MS) and found to be differentially 

regulated during the night.  The metabolic information obtained through this re-

oxygenation time course study provides greater insights into the molecular response of 

rice following de-submergence.  

 

4.1 Introduction 

Diel effects on plant metabolism are well documented to influence a wide range 

of metabolic pathways, including glycolysis, nitrogen assimilation, tricarboxylic acid 

(TCA) cycle, reactive oxygen species (ROS) removal, and photorespiration.1, 2  During 

submergence stress, the rice SUB1A gene has been shown to regulate carbon 

consumption, nitrogen metabolism, photorespiration, and the TCA cycle by decreasing 

the gibberellic acid response to catabolize leaf starch reserves.3-5  Additionally, the 

SUB1A gene has been hypothesized to improve plant tolerance to ROS, which are 

commonly encountered during reoxygenation upon de-submergence and other abiotic 

stresses.6  Interestingly, presence of the SUB1A gene is also known to increase 

survivability of rice subjected to prolonged darkness by limiting the breakdown of 

chlorophyll as well as through the conservation of carbon stores.7  Prolonged darkness is 
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commonly encountered by crops during submergence stress due to turbid water, 

suggesting that SUB1A is not only induced by the entrapment of ethylene under complete 

submergence, but other stresses encountered by the plant, such as extended darkness.  

This would reduce shoot photosynthesis driving the consumption of leaf starch reserved. 

Whether SUB1A is regulated by the diurnal cycle, however, is not well understood, and 

the influence of SUB1A on metabolism during normal day and night conditions might 

prove valuable. 

In Chapters 2 and 3, the effects of re-oxygenation after 24 h of recovery were 

interrogated in the submergence tolerant and intolerant rice varieties.3, 4 Although re-

oxygenation allows the plant to regain anaerobic metabolism, it also increases ROS 

production and causes dehydration, a secondary stress resulting from the submergence 

event.6   Unique metabolic differences between the M202 and M202(Sub1)varieties were 

detected and could be related to photosynthesis, photorespiration, and carbon fixation at 

the recovery time point.  We hypothesized that these differences during recovery may 

reflect a secondary stress induced by factors associated with de-submergence.  To further 

investigate the metabolic differences between the M202 and M202(Sub1) variety during 

the first 24 h of re-oxygenation, plants were submerged for 3 d, desubmerged at midday, 

and allowed to recover until dusk, midnight, dawn, or midday 24 h following de-

submergence.  To simultaneously evaluate the effect of SUB1A on the diurnal cycle of 

rice plants as well as the influence of the diurnal cycle on de-submergence, control plants 

were harvested at the corresponding time intervals.  Figure 4.1 shows the experimental 

design for submergence and recovery.  Tissue harvest began at the 3 d submergence time  
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Figure 4.1.  The experimental approach used to interrogate the effects of submergence 

and the diurnal cycle.  Control and stressed plants were harvested at 3 d of submergence 

and at each proceeding time point for each of the M202 and M202(Sub1) varieties.  
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point and continued for 24 h, resulting in 5 time points samples for the stress-treated and 

diurnal control plants. 

Trehalose-6-phosphate (T6P) is a secondary metabolite linked to carbon sensing 

and flowering.8-11  The loss of function of one gene responsible for synthesis of T6P, 

TPS1, results in an embryonic lethal mutation in the model plant Arabidopsis thaliana, 

indicating a significant physiological role for the phosphorylated disaccharide.12 

Compared with non-SUB1A containing rice, Fukao and coworkers found that continuous 

expression of the SUB1A gene in transgenic accessions resulted in a significant flowering 

delay, however it is unknown whether this delay is the result of decreased levels of T6P 

due to sequestration of carbon flux or to perturbation of a different pathway.7  Because of 

the importance of T6P in carbon sensing and flowering, understanding its relationship 

with the acclimation response in submergence tolerant and intolerant rice would further 

our understanding of the complex role of SUB1A. 

Due to its low abundance, reliable quantitative analysis of T6P in plant tissue 

extracts requires a targeted approach to minimize matrix effects, and increase selectivity 

and sensitivity. Methods reported for T6P analysis include anion-exchange 

chromatography coupled with mass spectrometry (AEC-MS) and hydrophilic interaction 

chromatography coupled with mass spectrometry (HILIC-MS).13, 14  The high salt content 

required for AEC-MS, however, makes the method undesirable as special instrumentation 

is needed to remove the non-volatile salts prior to MS.14  HILIC-MS was determined to 

be preferred over AEC-MS because it is a more universal method, easily transferrable 

across laboratories, and improved sensitivity by a factor 20 compared with AEC-MS.13  
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HILIC, however, requires extensive column equilibration with the target sample matrix to 

produce a reproducible separation, which is disadvantageous when analyzing samples 

that require constant cleaning and re-equilibration.15  Matrix effects can also lead to 

problems in HILIC separations when the nature of the matrix varies with sample type, a 

problem that can be significant in metabolomics experiments.  

An attractive alternative to AEC-MS and HILIC-MS is reverse-phase ion-pair 

(RPIP)-UPLC-MS, which has been used extensively for the analysis of anionic 

oligosaccharides.16-21  RPIP-UPLC utilizes an ion-pairing reagent (IPR) that has an ionic 

functional group that can ion-pair with the target compound and a hydrophobic tail that 

interacts with the column stationary phase (Figure 1.3).  In this study, a RPIP-UPLC-MS 

method was developed for the determination of T6P and other anionic secondary 

metabolites to elucidate their physiological roles in the plant response to submergence 

stress, re-oxygenation, and the diurnal cycle. 

4.2 Materials and Methods 

4.2.1 Reagents 

Acetic acid-d4, ammonium deuteroxide -d5, and deuterium oxide were purchased 

from Cambridge Isotope Laboratories, Inc. (Andover, MA). NMR chemical shift 

reference 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) and derivatization reagents 

methoxyamine hydrochloride (MeOX) and pyridine (+99% purity) were purchased from 

Sigma-Aldrich (St. Louis, MO).  N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) 

in 1% trimethylchlorosilane was obtained from Thermo Fisher Scientific (Waltham, 

MA).  Metabolite standards were obtained from MP Biomedicals (Solon, OH), Fisher 
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Scientific (Pittsburgh, PA), and Sigma-Aldrich.  Water (Burdick and Jackson, VWR, 

Radnor, PA) chloroform (Mallinckrodt Laboratory Chemicals, Phillipsburg, NJ), 

methanol, acetic acid, and ammonium hydroxide (Fisher Scientific) were of at least ACS 

grade.  Weak anion exchange solid phase cartridges (60 mg, 3cc) for LC-MS analysis 

were purchased from Bonna-Agela Technologies (Wilmington, DE).  Dibutylamine was 

obtained from Fluka (Sigma-Aldrich). 

4.2.2 Rice Growth Conditions 

Rice was grown and submergence stressed as previously described.3-5 The seeds 

were sterilized with 1% (v/v) sodium hypochlorite and 0.2% Tween-20 followed by 

rinsing with deionized (DI) water. Seeds were then immersed in overnight in DI water in 

the dark and germinated on moist paper towels in a Pyrex dish covered with plastic wrap 

for 5 d. After germination, seeds were transplanted into pots with soil using a planting 

density of 20 plants per pot and grown until the 3-leaf stage in a greenhouse at ambient 

temperature.  Seedling survival after transplantation was >99%.   

4.2.3 Treatment and Harvest 

Submergence stress was carried out using six 121 L trash cans filled with DI 

water and allowed to equilibrate overnight to the ambient temperature of the greenhouse 

(~30 °C)  prior to submergence. At the three-leaf stage (approximately 12 d), at midday 

seedlings were submerged for 3 d.  For re-oxygenation, plants were transferred from 

submergence conditions to the greenhouse bench.  Plants were harvested either upon de-

submergence or at the end of the designated recovery period of dusk, midnight, dawn, 

and midday 24 h after de-submergence.  Submergence and recovery time points were 
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determined based on the time of the sunrise and sunset.  For tissue harvest, plants were 

de-submerged, aerial tissue was removed, rinsed in DI water, and flash frozen in liquid 

nitrogen and stored at -80 °C. Control plants were grown simultaneously and harvested 

with the corresponding treatment at either de-submergence or the individual recovery 

time points.  Harvested plant tissue was ground to a powder by mortar and pestle under 

liquid nitrogen and lyophilized overnight until dry.  Samples were then stored at -80 °C 

until extracted. 

4.2.4 Metabolite Extraction and Solid Phase Extraction 

4.2.4.1 Metabolite Extraction for NMR and GC-MS 

Metabolite extraction for NMR and GC-MS analysis was carried out as 

previously described in sections 2.2 and 3.2.3, 4  Briefly, 1.5 mL of 80:20 MeOH:H2O was 

added to 50 mg of dried rice tissue in 2.0 mL Eppendorf tubes, shaken for 5 min on a 

platform shaker and centrifuged at 12 000 g for 4 min.  For GC-MS analysis, 30 µL 

aliquots were delivered into glass inserts (350 µL, Phenomenex, Torrence, CA) supported 

by 1.5 mL Eppendorf tubes and for NMR analysis, 1 mL aliquots were transferred to 

clean 1.5 mL Eppendorf tubes.  Samples were then centrifuged under vacuum until dry 

and stored at -20 °C until analyzed. 

4.2.4.2 Metabolite Extraction for UPLC-MS Analysis 

The sample extraction and solid phase extraction (SPE) protocols were adapted 

from a method developed by Delatte and coworkers.14  Briefly, 1 mL of a 3:8 

chloroform:acetonitrile mixture was added to 20 mg of dried plant tissue and shaken on a 

platform shaker for 5 min to break up cell walls.  Two liquid/liquid extractions were 
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carried out by adding separately 0.8 mL of water (for a total of 1.6 mL). The samples 

were shaken for 5 min on a platform shaker, centrifuged at 12 000 x g for 4 min, and the 

aqueous layer transferred to a 2.0 mL Eppendorf tube.  Because acetonitrile is miscible 

with water, partitioning of acetonitrile from the organic phase into the aqueous phase was 

expected and resulted in an additional 0.2 mL of the aqueous phase being transferred to 

the 2.0 mL Eppendorf tube for a final volume of 1.8 mL    Prior to UPLC-MS analysis, 

samples were subjected to weak-anion exchange SPE. SPE cartridges were conditioned 

with 1.0 mL of MeOH followed by 1.0 mL water containing 5 % NH4OH.  The dried 

extracts were reconstituted in 2.0 mL of water, loaded onto the cartridge and washed with 

1.0 mL of water followed by 1.0 mL of methanol.  Cartridges were allowed to dry and 

then eluted into a 2.0 mL Eppendorf tube with 2.0 mL of 80/20 H2O/MeOH containing 

5 % formic acid and dried by vacuum centrifugation for UPLC-MS analysis.  

4.2.5 NMR Analysis of Metabolite Extracts 

Samples were dissolved in 700 µL of a deuterated 100 mM ammonium acetate 

buffer adjusted to a pD of 7.6 containing 175 µM DSS as a chemical shift reference (0 

ppm).  The pD of the solution was determined from the pH meter reading  (pH*) with the 

equation pD = pH* + 0.4.22  To remove lipids, a liquid-liquid extraction was performed 

with 100 µL CDCl3, centrifuged at 5000 x g to break the emulsion, and 620 µL of the 

aqueous phase transferred to a clean NMR tube for analysis. 

 Samples were analyzed with a 14.1 T Bruker Avance NMR spectrometer tuned to 

detect 1H resonances at 599.69 MHz.  Spectra were collected acquired using a 10.0 µs 

90° pulse with a 5 mm inverse broadband probe using digital quadrature detection (DQD) 
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with the transmitter set on the HOD frequency and sample temperature maintained at 298 

K.  The Bruker-defined wet pulse program (wet) was used to reduce the intensity of the 

HOD resonance. Magnetic field homogeneity was optimized using up to 28 shims and the 

probe was manually tuned and matched.  Spectra were required without spinning and the 

spectrometer was locked using D2O. A relaxation delay of 1.5 s and a spectral width of 

11.97 ppm were used giving a total experiment time of 41 min for which 16 dummy 

scans and 1048 transients were co-added. The DSS line-width was less than 0.8 Hz for 

each sample before apodization with an exponential function equivalent to 0.5 Hz line 

broadening.  Free induction decays (FIDs) were collected into 32 768 points and zero 

filled to 65 536 points.  

4.2.6 GC-MS Analysis of Metabolite Extracts 

 All procedures for GC-MS analysis and data processing were performed as 

described in the materials and methods section of Chapter 3 (Chapter 3.2).3 

4.2.7 RPIP-UPLC-MS Analysis of Metabolite Extracts 

The sample extracts prepared for GC-MS analyses were also used for the RPIP-

UPLC-MS measurements. Samples were reconstituted in 200 µL of water and 20 µL 

injected onto the column.  UPLC separations were performed on a 2.1 x 100 mm Acquity 

UPLC HSS T3 column with a 1.8 µm particle size (Waters Corporation, Milford, MA).  

A guard column of the same stationary phase was used in-line with the analytical column.  

The separation was performed on an Acquity Ultra Performance LC (Waters 

Corporation) with a binary solvent system for gradient elution; solvent A was aqueous 10 

mM DBA buffer adjusted to a pH of 7.4 with acetic acid and solvent B was 10 mM DBA 
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buffer in MeOH adjusted to a pH meter reading of 8.0 with acetic acid.  The solvent 

gradient used an initial isocratic step of 98 % solvent A for 5 min, followed by a 3.5 % 

increase of solvent B over the next 8 min, after which the faction of solvent B was 

increased by 10.8 % for 6 min until reaching 95 %.  The fraction of solvent B was 

maintained at 95 % for 2 min, following a return to 98 % A over 1 min.  The column was 

allowed to equilibrate for 8 min between injections. A Waters ESI quadruple time-of-

flight mass spectrometer operated in negative mode was used to measure total ion 

chromatograms (TICs) using the following parameters: desolvation temperature, 250 °C; 

source temperature, 120 °C; cone voltage, 35 V; capillary voltage, 2800 kV; extractor 

voltage, 1V; radio frequency lens, 0.5 V; m/z range, 80-800; scan time of 0.9 sec with an 

inter-scan delay 0.1 s. 

4.2.7.1 Data Processing 

NMR and GC-MS data pre-processing was carried out as described in sections 

2.2.5.3 and 3.2.7.  LC-MS data pre-processing was carried out with MassLynx (Waters 

Corporation) to collect integration and peak height values for identified metabolites.  For 

adenosine monophosphate (AMP), 6-phosphogluconate (6PG), and 3-phosphoglycerate 

(3PG) integrated peak areas were determined by integrating the extracted ion 

chromatogram (XIC) for each compound.  Prior to integration, Savitzky Golay smoothing 

with a window size of ±3 scans 2 smooths was applied to each XIC and automatic 

integration performed by MassLynx.  Because of partial peak overlap of the different 

isomers of phosphorylated sugars, peak heights for glucose-6-phosphate (G6P), sucrose-

6-phosphate (S6P), and trehalose-6-phosphate (T6P) were extracted from mass spectra.  
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Prior to data extraction, the mass spectrum of each compound was smoothed as described 

for integrated data, the top 90% of the peak was centered with a minimum peak width at 

half height of 2 channels and the peak heights in counts determined.   All data was 

transferred to an Excel spreadsheet for statistical analysis.  

4.2.8 Statistical Analysis 

Statistical analysis was carried out using either the peak areas (for NMR, GC-MS, 

and selected LC-MS analytes) or peak heights (for G6P, S6P and T6P) as indicated in 

section 4.2.7.1 using the freely available program R for statistical analysis.  Data 

normalization was only used for data collected by NMR.  The averages of the results 

from at least 5 biological replicates were used to determine fold changes and significance 

(p-value of 0.05) was determined by an analysis of variance (ANOVA) using the R 

package oneway.test.23  Trajectory plots were generated in Origin 7.5 (OriginLab 

Corporation, Northampton, MA ). 

4.3 Results and Discussion 

An analytical approach incorporating GC-MS, NMR, and RPIP-UPLC-MS was 

used to elucidate the effects of re-oxygenation after submergence stress on the M202 and 

M202(Sub1) rice varieties.  Additionally, metabolite profiling of both genotypes was 

carried out to elucidate the interaction of the diurnal cycle and the SUB1A gene.   Plants 

from both genotypes were de-submerged at midday and allowed to recover until dusk, 

midnight, dawn, or midday 24 h post submergence, and interrogated for differences in the 

levels of primary and secondary metabolites.  Additionally, circadian differences between 
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the two genotypes were investigated in the absence of stress to determine differences 

between M202 and M202(Sub1). 

4.3.1 NMR and GC-MS Analysis of Primary Metabolism 

4.3.1.1 The Influence of the Diurnal Cycle on Rice Metabolism  

 The differences in metabolite levels between M202 and M202(Sub1) were 

examined to better understand the influence of the diurnal cycle at midday, dusk, 

midnight, dawn, or midday +24 h on metabolites in plants that possess or lack the SUB1A 

gene.  Metabolically, energy is produced through photosynthesis in the light and through 

aerobic respiration in the dark. The metabolite profiles for control plants of both 

genotypes were measured by GC-MS and NMR and represented as trajectory plots in 

Figures 4.2 and 4.3, respectively, by plotting the area (GC-MS) or normalized area 

(NMR) over the course of the diurnal cycle.  Additionally, the effect of the diurnal cycle 

on primary metabolism is summarized in Tables 4.1 and 4.2 as fold changes between and 

within genotypes, with significant differences (p-value < 0.05) represented by an asterisk. 

A total of 19 amino acids, 11 organic acids, 3 phytosterols, 2 sugars and 1 dipeptide were 

detected using both GC-MS and NMR.  Of the 19 amino acids, 10 were quantified using 

both instruments and were highly correlated, with small differences between the 

trajectory plots attributable to differences in sensitivity in the two measurements. 

Sucrose, glucose, alanylglycine (AlaGly), S-methyl methionine (SMM), and -amino 

butyrate (GABA) were exclusively quantified by NMR while -alanine (-ala)*, 

pyroglutamate, glycine (Gly), histidine (His)*, lysine (Lys), methionine (Met)*, 

phenylalanine (Phe), tryptophan (Trp), tyrosine (Tyr), campesterol, cirate, fumarate, -
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hydroxybenzoate, malate, malonate*, myo-inositol, shikimate, -sitosterol, stigmasterol, 

succinate, and threonate were exclusively quantified by GC-MS.  The compounds 

indicated with an asterisk were below the limit of quantitation (LOQ) for the control 

samples but were detected at higher levels in the treated plants as discussed in section 

4.3.1.2.   

 Metabolite levels are known to be affected by diel conditions in plants, but 

regulation at this temporal level by the SUB1A gene has not been investigated.24-26  In 

experiments using the Oryza sativa ssp. japonica cv. Zhonghua 10 variety, carbohydrate 

assays showed that levels of glucose, fructose, and sucrose peaked in leaf tissue at the 

end of the light cycle and decline during the dark cycle.2  Our results indicate a slightly 

different trend in glucose levels for the M202 and M202(Sub1) varieties as compared 

with Zhonghua 10.  As in the study by Wang and coworkers (citation), sucrose 

accumulated throughout the course of the day, peaking at the end of the light cycle, and 

declined during the dark cycle (Figure 4.3, Table 4.2).  This is consistent with the 

hypothesis that starch produced during photosynthesis is catabolized to sucrose at night to 

maintain energy homeostasis through the production of glucose and fructose.27  In 

contrast, glucose levels increased during the dark cycle in M202 and M202(Sub1). This 

result was the opposite of the observations by Wang and coworkers, who found that 

glucose decreased.2  The reasons for the differences between the two experiments could 

be attributed to data normalization or differences between the varieties, however further 

experiments are required to resolve this. 
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Figure 4.2.  Trajectory plots from the GC-MS data representing the average area 

(counts/min) for M202 (■) and M202(Sub1) (●).  The time points are connected using 

black (M202) or red (M202(Sub1)) lines.  The treatments are labeled as Sub Control, 

Dusk Control, Midnight Control, Dawn Control, and 24Hr Control to represent control 

tissue at each time point.  Each data point is the replicate of at least 5 biological replicates 

and error bars represent standard deviation.  Metabolites below the limit of quantitation 

are indicated with an asterisk.
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Table 4.1.  A comparison of the levels of metabolites in extracts of M202 and M202(Sub1) controls determined by GC-MS. The comparison 

between varieties is represented by fold changes for each diurnal interval in the absence of submergence.  All comparisons were made to the true 

midday time point.  Asterisks indicate significant differences at the 95% confidence limit.  ND represents metabolite ratios not determined 

because signals were below the limit of quantification.  The “C” at the end of the treatment label is used to indicate non-submerged tissue 

harvested from control plants. 

 
 M202 M202(Sub1) M202/M202(Sub1) 
 DuskC:SubC  MidnightC:SubC DawnC:SubC 24hrC:SubC DuskC:SubC MidnightC:SubC DawnC:SubC 24hrC:SubC SubC DuskC MidnightC DawnC 24hrC 

Amino Acids              

   Ala 1.1 1.0 1.0 1.4 0.5 0.6 1.0 0.8 0.5 1.2 0.9 0.5 0.9 

   β-Ala 0.5 0.6 0.6 1.2 0.5 1.3 0.4 0.9 0.9 0.9 0.4 1.2 1.2 

   Asn ND ND ND ND 0.7 1.4 0.9 0.3 ND 0.4 0.3* 0.5 1.3 

   Asp 2.0 2.0 2.5 0.9 1.6 1.7 1.7 0.8 0.6 0.8 0.8* 1.0 0.7 

   Gln 1.2 1.2 1.1 0.7 0.8 0.7 0.6 0.4 0.4 0.7 0.7 0.8 0.7 

   Glu 0.8 0.8* 0.8 0.8 0.8 0.8 0.7 0.8 0.9 0.8 0.8* 1.0 0.9 

   Gly 0.1* 0.1* 0.1* 0.6* 0.2* 0.1* 0.1* 0.5* 1.0 0.6 0.7 0.8 1.1 

   His ND ND ND ND ND ND ND ND ND ND ND ND ND 
   Ile ND ND ND ND ND ND ND ND ND ND ND ND ND 
   Lys 0.9 1.3 1.6* 1.2 1.2 1.7 2.3* 1.5 1.3 1.0 1.0 1.0 1.1 

   Met 0.9 0.4 1.3 1.0 1.2 1.2 1.2 0.5 0.7 0.5 0.2* 0.8 1.3 

  Phe ND ND ND ND ND ND ND ND ND ND ND ND ND 
   Ser 0.9 0.5* 0.7* 0.9 0.7 0.5* 0.5* 0.8 0.8 0.9 0.7 1.0 0.9 

   Thr 0.9 0.7 0.8 0.7 1.1 0.9 0.8 0.8 1.0 0.8 0.7 1.0 0.9 

   Trp ND ND ND ND ND ND ND ND ND ND ND ND ND 
   Tyr 1.2 1.5 1.9* 1.2 1.6 1.9 1.9* 1.2 1.1 0.8 0.9 1.1 1.1 

   Val ND ND ND ND ND ND ND ND ND ND ND ND ND 
Organic Acids              

   Citrate 1.2 1.7* 1.8* 1.2 1.2 1.7* 1.9* 1.2 1.0 1.0 1.1 1.0 1.0 

   Fumarate 0.9 0.7 0.8 0.7 1.0 1.0 0.7 0.8 1.3 1.1 1.0 1.4 1.2 

   GHB 1.4 1.3 0.6 1.2 0.9 1.1 0.9 0.7 0.8 1.2 0.9 0.6 1.4 

   Glutarate  0.6 0.3* 0.4* 1.2 0.8 0.4* 0.4* 1.4 1.3 1.0 1.0 1.3 1.1 

   Malate 1.0 1.0 0.9 1.1 1.1 1.0 1.0 1.2 1.1 1.0 1.1 1.0 1.0 

   Malonate ND ND ND ND ND ND ND ND ND ND ND ND ND 
   Shikimate 1.1 1.0 1.0 1.1 1.2 1.1 1.1 1.3 1.2 1.1 1.1 1.1 1.0 

   Succinate 1.2 1.1 1.1 1.0 1.6 1.3 1.4 1.1 1.2 0.9 1.0 1.0 1.2 

   Threonate 1.0 1.0 0.8 1.0 0.9 1.1 0.9 1.1 1.1 1.2 1.0 1.0 1.1 

Phytosterols              

 Campesterol 0.8 0.8 0.9 0.9 1.2 1.2 1.1 1.2 1.4 1.0 0.9 1.1 1.1 

-Sitosterol 1.0 1.1 0.8 1.1 1.3 1.2 1.3 1.5 1.5 1.1 1.4* 0.9 1.1 

   Stigmasterol 0.8 0.8 0.9 0.8 1.3 1.4 1.2 1.2 1.7 1.0 0.9 1.2 1.1 

Other Metabolites              

   Myo-Inositol 1.0 1.0 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.0 1.1 1.1 1.1 



 

 163 

 
 

 

 

Figure 4.3.  Trajectory plots of NMR data as relative normalized area for M202 (■) and 

M202(Sub1) (●).  The time points are connected using black (M202) or red (M202(Sub1) 

lines.  The treatments are labeled as Sub Control, Dusk Control, Midnight Control, Dawn 

Control, and 24Hr Control to represent control tissue sampled at each time point.  Each 

data point is the average of at least 5 biological replicates and error bars represent the 

standard deviation. Metabolites below the limit of quantitation are indicated with an 

asterisk. 
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Table 4.2.  A comparison of the levels of metabolites in extracts of M202 and M202(Sub1) controls determined by 1H NMR. The comparison 

between varieties is represented by fold changes for each diurnal interval in the absence of submergence. All comparisons were made to the 

true midday time point.  Asterisks indicate significant differences at the 95% confidence limit.  ND represents metabolite ratios not 

determined due to insufficient signal for quantitation.  The “C” at the end of the treatment label is used to indicate non-submerged tissue. 

 
 M202 M202(Sub1) M202/M202(Sub1) 
 DuskC:SubC  MidnightC:SubC DawnC:SubC 24hrC:SubC DuskC:SubC MidnightC:SubC DawnC:SubC 24hrC:SubC SubC DuskC MidnightC DawnC 24hrC 

Sugars              

   Glucose 0.7 0.9 1.1 0.9 0.7 1.0 1.2 1.0 1.1 1.0 1.0 1.0 1.0 

   Sucrose 1.0 0.9 0.9* 1.0 1.1 1.0 0.9* 1.0 1.0 1.0 1.0 1.0 1.0 

Amino Acids              

   Ala 1.1 1.2 1.4 1.3 0.7 0.7 0.8 1.0 0.6 1.0 1.0 1.0 0.8* 

   Asn ND ND ND ND ND ND ND ND ND ND ND ND ND 
   Asp ND ND ND ND ND ND ND ND ND 0.8 0.7* 0.9 0.7 

   Glu 0.9 1.0 1.5 1.0 0.8* 0.7 0.8 0.8 0.7 0.8 1.0 1.2 0.9 

   Gln 1.3 1.4 2.3 1.5 0.6 0.9 1.5 0.9 0.8 1.8 1.3 1.2 1.2 

   Ile ND ND ND ND ND ND ND ND ND ND ND ND ND 
   Leu ND ND ND ND ND ND ND ND ND ND ND ND ND 
   Ser ND ND ND ND ND ND ND ND ND ND ND ND ND 
   SMM ND ND ND ND ND ND ND ND ND ND ND ND ND 
   Thr 1.1 1.0 1.2 0.8 1.0 0.9 1.1 0.6 0.8 1.0 0.9 0.9 1.2 

   Val ND ND ND ND ND ND ND ND ND 1.0 0.9 1.0 1.0 

Organic Acids              

   Ascorbate 0.7 1.5 2.2 1.4 0.8 1.0 1.1 0.9 0.6 0.5 0.9 1.2 1.0 

   GABA ND ND ND ND ND ND ND ND ND ND ND ND ND 
Other Metabolites              

   AlaGly 1.1 1.0 1.5 0.9 1.0 1.2 1.3 0.6 0.7 0.8 0.6* 0.8 1.0 
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With the exception of aspartate (Asp), glutamate (Glu), glutarate, glycine (Gly), 

lysine (Lys), and tyrosine (Tyr), metabolites were unchanged in response to the diurnal 

cycle.  Interestingly, alanine (Ala) remained unchanged over the course of the dark and 

light conditions despite the presumed increase in glucose catabolism to pyruvate via 

glycolysis (Figure 4.3, Table 4.2), whereas Lys accumulated during the dark cycle and 

declined only during the light cycle.  Both Ala and Lys are products of pyruvate 

metabolism, and in contrast to submergence stress where Ala is the preferred carbon 

storage metabolite (Chapters 2 and 3), Lys accumulates during the dark cycle and Ala is 

unchanged (Figure 4.3, Table 4.2).   Similarly, Tyr and Asp accumulate in the absence of 

light with Tyr gradually peaking at dawn. Asp, a precursor to the TCA cycle intermediate 

2-oxoglutarate, accumulated quickly between midday and dusk, remaining unchanged 

during the dark cycle, and then dropping by midday during the light cycle.  The afternoon 

accumulation of Asp might be due to reduced TCA cycle activity through photosynthesis, 

effectively slowing glycolysis, which could affect energy production via the TCA cycle.  

However, it is still unclear if the TCA cycle is operates during light or dark conditions.28  

Flux studies are needed to understand the changes of Asp with respect to the TCA cycle.  

Citrate, a TCA cycle intermediate, also accumulated in the absence of light.  Citrate, a 

feedback inhibitor of the TCA cycle, is the only detected TCA cycle intermediate to 

change significantly in response to changes in the light cycle (Figure 4.2 and Table 4.1).  

The accumulation of both citrate and Asp during darkness could indicate that the TCA 

cycle slows in the absence of photosynthesis.  In contrast, levels of Gly and Ser decrease 

during darkness when compared to levels at midday (although only significantly for the 
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intolerant variety).  Gly accumulation has been correlated in other plants with 

photorespiration but Gly can also function as a ligand in calcium signaling, which can 

have multiple functions in the plant stress response.29-33  At dusk, the beginning of the 

dark cycle, Gly levels decrease rapidly by a 0.1 fold change compared with levels at 

midday and remained low until re-accumulating by midday (Figure 4.2, Table 4.1).  

Interestingly, Gly levels do not return to the same level as the previous midday 

measurement, an observation that may reflect uncontrollable greenhouse factors, such as 

light levels and temperature.  The amino acids Ser and Thr are directly related to the 

metabolism of Gly but despite the pronounced changes in Gly levels, Ser and Thr levels 

changed more gradually, supporting the hypothesis that the changes in Gly levels are 

related to photorespiration.34  Glu followed a similar trend, decreasing during the dark 

cycle, indicating that nitrogen accumulation might be affected by the diurnal cycle in 

rice.2  Glu can be converted to 2-oxoglutarate, a TCA cycle intermediate, enabling the 

build-up of TCA cycle intermediates in anticipation of the imminent light cycle.35  

However, 2-oxoglutarate was not monitored during this study and further experiments are 

necessary to elucidate the role of Glu in nitrogen or carbon storage. 

 Diurnal differences between the genotypes were evident from the NMR data 

(Figure 4.3, Table 4.2) for Ala, AlaGly, and Asp and from the GC-MS data (Figure 4.2 

and Table 4.1) for Asp and Glu.  For Asp, the NMR data shows a gradual increase over 

the course of night, peaking at dawn and dropping at midday, with a statistically 

significant 0.7 fold change difference between M202 and M202(Sub1) occurring at 

midnight.  Similarly, a statistically significant 0.7 fold change difference between M202 
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and M202(Sub1) was evident from the GC-MS data.  In contrast to the trajectory plot 

generated from NMR data (Figure 4.3), GC-MS measurements of Asp showed a rapid 

increase at dusk, remained relatively unchanged at midnight and dawn, and subsequently 

decreased at midday after the resumption of photosynthesis.  Despite the modest 

differences between the NMR and GC-MS trajectory plots, the accumulation and 

divergence of Asp coincides with the decrease in levels of Glu as measured by GC-MS.  

Because of high background and peak overlap in the NMR data in the spectral region that 

Asp proton resonances are detected, the GC-MS data are likely to be more reliable.  

Through a reversible transamination reaction, Glu is deaminated to form Asp.36  The 

elevated levels of Glu and Asp in the tolerant variety compared with the intolerant variety 

can be attributed to nitrogen assimilation and TCA cycle intermediate production, 

respectively, and elevated levels of both metabolites in M202(Sub1) during low light 

levels suggest a distinction in ability to provide the precursors necessary to promote 

energy production.   

The NMR and GC-MS trajectory plots for Ala provide no indication of genotype-

dependent changes produced by the diurnal cycle. A statistically significant difference 

was detected at the 24 h control time point exclusively in the NMR data, with the M202 

variety having 0.8-fold difference for Ala when compared with the M202(Sub1) variety 

(Table 4.2).  This observation is inconsistent with the results presented in Chapters 2 and 

3, where levels of Ala were determined to be statistically indistinguishable in the absence 

of stress (Figures 2.5 and 3.3).  The reason for the genotypic differences in Ala levels in 
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this experiment is unclear and further experiments are needed to confirm the divergence 

between the two varieties during control conditions.   

Differences between the genotypes for the dipeptide AlaGly during the dark cycle 

were also detected by NMR.  AlaGly levels for the M202 variety were 0.6-fold lower 

than levels measured for M202(Sub1).  As previously reported (Ch. 2), levels of AlaGly 

decrease in rice during extended dark cycles and subsequently recovery when re-exposed 

to light, linking the metabolite with photosynthesis through the experiments by Manabe 

and coworkers, where exogenous D-Ala was only incorporated into D-AlaGly during the 

light cycle.37   These authors noted an increase in AlaGly content for up to 3 h after 

beginning the dark cycle.37  The difference in AlaGly levels between the genotypes at the 

midnight time point remains unclear.   

4.3.1.2 Metabolite Comparison After Re-oxygenation Following Submergence Stress  

The effect of 1 d of recovery following submergence stress on the primary 

metabolism of the M202 and M202(Sub1) varieties was previously investigated by NMR 

and GC-MS.3, 4  In Chapters 2 and 3, a divergence in the levels of several metabolites was 

observed for the tolerant and intolerant varieties during the recovery period.  With the 

exception of glucose and sucrose, metabolite levels did not decrease as rapidly for the 

M202 variety compared with the M202(Sub1) variety (Table 2.1, Figure 2.5, Table 3.3, 

Figure 3.3).  In both genotypes, sucrose levels completely converged by the 1 d recovery 

time point while glucose levels increased exclusively for the M202(Sub1) variety (Figure 

2.3, Table 2.1).  These data suggest that although sucrose levels are indistinguishable in 

the two genotypes within 1 d of reoxygenation, the effects on glucose metabolism and re-
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assimilation of other accumulated metabolites may be differ.  To better understand the 

effects of re-oxygenation after submergence stress, plants were desubmerged after 3 d of 

stress and harvested at the time of submergence, dusk, midnight, dawn, or +24 hr after 

desubmergence.  Metabolite trajectories were generated from GC-MS measurements 

(Figure 4.4) and NMR measurements (Figure 4.5).  The data from both GC-MS and 

NMR were also represented as fold changes within and between genotypes in Tables 4.3 

and 4.4, respectively, with statistical significance (P < 0.05) represented by an asterisk. 

 Consistent with our previously reported results (Figures 2.5 and 3.3), 15 of the 18 

detected amino acids accumulated in response to submergence, reflecting a stress 

response involving nitrogen assimilation and carbon catabolism (Figures 4.3 and 4.4, 

Tables 4.3 and 4.4).  Although amino acid accumulation occurred in both genotypes, the 

trend was less evident for the M202(Sub1) variety, supporting earlier confirmation that 

the tolerant variety consumes less carbohydrate resources than the intolerant M202 

variety.5  During the recovery period, metabolite levels generally recovered moderately 

when sampled at dusk, remained unchanged when measured at the midnight and dawn 

time points, and continued after dawn with the resumption of photosynthesis.  Despite the 

differences exhibited by the genotypes, some amino acids, including the branched-chain 

amino acids Val, Ile, and Leu as well as Gln, did not demonstrate a genotypic response 

comparable with what was previously reported after 3 d of submergence stress (Figures 

2.5, 3.3).3, 4  These results suggest that the submergence stress imposed in the previous 

and current experiments, although identical in length, may not have been of equivalent 

severity.  This is not unexpected since treatments were performed in the greenhouse. 
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Figure 4.4.  Trajectory plots from the GC-MS data representing the average area 

(counts/min) for M202 (■) and M202(Sub1) (●).  The time points are connected using 

black solid (M202) or red dotted (M202(Sub1) lines.  The treatments are labeled as the 

control (SubC), submerged (Sub), and recovery time points Dusk, Midnight, Dawn, and 

24hr.  Each data point is the average of at least 5 biological replicates and error bars 

represent standard deviation.
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Table 4.3.  A comparison of the levels of metabolites in M202 and M202(Sub1) determined by GC-MS analysis.  The comparison between varieties is 

represented by fold changes samples collected immediately following the submergence treatment and the diurnal interval post desubmergence.  The 

inter-genotype comparisons are made with the treated tissue and the initial control tissue.  Asterisks indicate significant differences at the 95% 

confidence limit.  ND represents metabolite ratios not determined due to insufficient signal for quantitation.  The “C” at the end of the treatment label is 

used to indicate non-submerged tissue. 

 
 M202 M202(Sub1) M202/M202(Sub1) 
 Sub:SubC Dusk:SubC Midnight:SubC Dawn:SubC 24hr:SubC Sub:SubC Dusk:SubC Midnight:SubC Dawn:SubC 24hr:SubC SubC Sub Dusk Midnight Dawn 24hr 

Amino Acids                 

   Ala 43.8* 34.2* 34.0* 32.9* 24.6* 12.4* 8.3* 8.6* 7.7* 7.5* 0.4 1.5* 1.7* 1.7* 1.8* 1.4 

   β-Ala ND ND ND ND ND ND ND ND ND ND ND 1.3 1.2 1.0 1.2 1.6* 
   Asn ND ND ND ND ND ND ND ND ND ND ND 1.6* 2.5* 1.8* 1.9* 2.5* 

   Asp 3.0* 3.7* 3.7* 4.2* 2.2 1.9* 2.3* 2.3* 2.3* 1.4 0.6 0.9 0.9 0.9 1.0 0.9 

   Glu 1.9* 1.7* 1.2 1.4 1.5 1.8* 1.2 1.0 1.0 1.4 0.8 0.8* 1.1 0.9 1.0 0.8* 

   Gln 21.7* 20.3* 19.4* 23.5* 15.3* 5.4* 5.2* 5.6* 5.6* 4.7* 0.4 1.4 1.4 1.2 1.5 1.1 

   Gly 1.1 1.2 0.9 1.0 2.3 1.1 0.9 0.8 0.6 2.0 0.9 0.9 1.2 1.1 1.5* 1.0 

   His ND ND ND ND ND ND ND ND ND ND ND 1.4 2.3* 2.1 2.3* 1.6 

   Ile ND ND ND ND ND ND ND ND ND ND ND 0.7 0.4 1.7 1.8* 6.9 

   Lys ND ND ND ND ND ND ND ND ND ND ND 1.2 1.4 1.2 1.5 1.0 

   Met 15.6* 14.0* 12.9* 12.7* 7.0* 10.7* 7.4* 6.3* 5.6* 2.5* 0.7 1.0 1.4* 1.5* 1.6* 2.0 

   Pyroglutamate 2.9* 3.0* 2.7* 2.6* 2.2* 2.1* 2.1* 2.3* 2.0* 1.8 0.9 1.2 1.2 1.1 1.1 1.1 

   Ser 4.1* 3.7* 3.2* 3.4* 2.7* 2.8* 2.5* 1.8* 1.6* 1.7* 0.7 1.0 1.0 1.2 1.4* 1.1 

   Thr 9.4* 8.7* 7.6* 7.3* 4.1* 7.2* 5.7* 4.6* 3.9* 2.4* 0.9 1.1 1.3* 1.4* 1.6* 1.5* 

   Trp ND ND ND ND ND ND ND ND ND ND ND 1.1 1.3* 1.3* 1.3* 1.4 

   Tyr 14.2* 12.6* 11.4* 9.8* 5.4* 11.9* 9.0* 7.0* 5.1* 2.1* 1.0 1.2* 1.4* 1.6* 1.9* 2.6* 

   Val ND ND ND ND ND ND ND ND ND ND ND 1.7 1.5 1.6 1.9* 1.8 

Organic Acids                 

   Citrate 2.0* 1.3 1.8* 1.9* 0.7 2.1* 1.6 2.0* 2.1* 1.1 0.9 0.9 0.8 0.8 0.8 0.5* 

   Fumarate 1.1 4.1* 2.6* 2.8* 4.0* 1.0 2.6* 2.2* 2.1* 2.8* 1.3 1.4 2.1* 1.6* 1.8* 1.9* 

   GABA 8.1* 7.5* 6.5* 6.3* 4.9* 5.9* 4.0* 4.0* 3.5* 2.7* 0.7 0.9 1.3 1.1 1.2 1.2 

   Glutarate  0.4* 0.7 0.4* 0.4* 1.4* 0.5* 0.5* 0.3* 0.3* 1.4* 1.1 0.9 1.8* 1.5 1.3 1.1 

   Malate 1.2 1.2 1.1 1.0 1.2* 1.0 1.0 1.0 1.0 1.2* 0.9 1.0 1.0 1.0 1.0 0.9 

   Malonate 3.7* 2.8* 2.9 2.2* 1.8* 2.1 1.4 0.8 1.1 0.5 1.1 2.0* 2.2 3.7* 2.2 3.6* 

   Shikimate 0.6* 0.6* 0.5* 0.6* 0.6* 0.7* 0.8 0.8* 0.7* 0.8* 1.1 0.9 0.9 0.8* 0.9 0.8 

   Succinate 1.2 2.0* 2.2* 1.9* 0.9 1.0 2.6* 2.1* 1.7* 1.0 1.0 1.3* 0.8 1.1 1.2* 0.9 

   Threonate 1.3* 1.0 1.0 1.0 1.0 1.4* 1.1 1.1 1.0 1.2 1.0 1.0 0.9 0.9 1.0 0.9 

Phytosterols                 

   Campesterol 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.1 1.2 1.1 1.2 1.1 1.0 1.1 1.0 1.1 

-Sitosterol 0.8 0.7 0.7 0.7 0.7 1.1 1.2 1.1 1.1 1.0 1.5 1.0 0.9 1.0 0.9 1.0 

   Stigmasterol 0.7 0.9 0.9 1.0 0.7 1.2 1.5 1.4 1.5 1.1 1.3 0.8 0.8 0.9 0.8 0.9 
Other 

Metabolites                 

   Myo-Inositol 0.8* 0.7* 0.7* 0.8* 0.8* 0.8* 0.8* 0.8* 0.8* 0.9* 1.0 0.9 1.0 1.0 1.0 1.0 
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Figure 4.5.  Trajectory plots from the NMR data representing the relative normalized 

average area for M202 (■) and M202(Sub1) (●) samples.  The time points are connected 

using black (M202) or red (M202(Sub1) lines.  The treatments are labeled as the control 

(SubC), submerged (Sub), and recovery time points Dusk, Midnight, Dawn, and 24hr.  

Each data point is the average of at least 5 biological replicates and error bars represent 

standard deviation.
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Table 4.4.  A comparison of the levels of metabolites between M202 and M202(Sub1) samples determined by NMR analysis.  The comparison between 

varieties is represented by fold changes for submergence and diurnal interval post-desubmergence. The inter-genotype comparisons are made with the 

treated tissue and the initial control tissue.   Asterisks indicate significant differences at the 95% confidence limit.  ND represents metabolite ratios not 

determined due to insufficient signal for quantitation.  The “C” at the end of the treatment label is used to indicate non-submerged tissue. 

 

 M202 M202(Sub1) M202/M202(Sub1) 

 Sub:SubC Dusk:SubC Midnight:SubC Dawn:SubC 24hr:SubC Sub:SubC Dusk:SubC Midnight:SubC Dawn:SubC 24hr:SubC SubC Sub Dusk Midnight Dawn 24hr 

Sugars                 

   Glucose 1.2 0.7* 1.1 1.1 2.3* 1.4* 1.0 1.7* 1.8* 2.4* 1.1 0.9 0.7* 0.7* 0.7* 1.0 

   Sucrose 0.4* 0.8* 0.7* 0.5* 0.7* 0.5* 0.9* 0.6* 0.6* 0.8* 1.0 0.7* 1.0 1.1 0.9* 0.9* 

Amino Acids                 

   Ala 30.4* 11.6* 13.0* 17.3* 9.1* 8.5* 3.3* 5.2* 5.1* 3.5* 0.6 2.2* 2.1* 1.5 2.0* 1.5 

   Asn ND ND ND ND ND ND ND ND ND ND ND 2.2* 1.9 2.0* 1.8 2.4 

   Asp ND ND ND ND ND ND ND ND ND ND ND 0.9 0.7 1.0 1.2 1.0 

   Glu 5.0* 1.9* 2.1* 2.6* 1.6 2.6 1.5* 1.6* 2.1 1.4 0.7 1.3 0.8 0.9 0.8 0.8 

   Gln 8.0* 4.5* 6.6* 7.4* 3.0 5.7 2.7* 4.2* 3.4* 2.0* 0.8 1.1 1.3 1.2 1.7 1.2 

   Ile ND ND ND ND ND ND ND ND ND ND ND 1.2 1.3* 1.5* 1.4 1.6 

   Leu ND ND ND ND ND ND ND ND ND ND ND 0.9 1.0 1.4 1.4 1.6 

   Ser ND ND ND ND ND ND ND ND ND ND ND 1.0 0.6 1.0 1.4 1.3 

   SMM ND ND ND ND ND ND ND ND ND ND ND 1.0 1.2 1.8 1.5 1.0 

   Thr 15.0* 8.2* 9.2* 8.8* 3.2* 9.0* 4.6* 4.9* 4.3* 1.6* 0.8 1.4* 1.5* 1.6* 1.7* 1.6* 

   Val ND ND ND ND ND ND ND ND ND ND ND 1.2 1.4* 1.5* 1.7* 1.5 

Organic Acids                 

   Ascorbate 0.7 0.6 0.8 0.9 0.7 0.6 0.3 0.6 0.9 0.6 0.6 0.7* 1.1 0.9 0.6* 0.8 

   GABA ND ND ND ND ND ND ND ND ND ND ND 0.9 1.0 1.4 1.3 1.3 

Other  
Metabolites                 

   AlaGly 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.2 0.7 0.7 0.6 0.7 0.8 0.9 
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Regardless of the physiological implications of experimental differences, both the 

submergence stress and re-oxygenation response in these experiments is consistent with 

the proposed quiescence model for carbon sequestration predominant in the tolerant 

variety. 

 Before, during, and after submergence Gly levels remained unchanged until 1 d 

post submergence when levels in both varieties increased by a ~1.5-fold change 

compared with measurements taken at the previous time points.  Genotypic differences 

were only evident at the dawn, with levels in the M202 variety lower by a 1.5-fold 

change compared to the Gly levels measured in the M202(Sub1) variety.  As discussed in 

Chapter 3 and section 4.3.1.1, alterations in Gly levels are most likely indicative of 

changes in photorespiration.  As the recovery extended to the dawn time point, levels of 

Gly measured in the M202(Sub1) variety began to decrease.  In context with the decrease 

in Gly levels during changes in the light cycle in the absence of stress (Figure 4.2, Table 

4.1), the lower levels of Gly at the dawn point measured exclusively for the submergence 

tolerant variety might be indicative of a reacclimation to non-stressed conditions.  The 

increase in Gly levels during the light cycle 1 d post submergence for both genotypes is 

inconsistent with what was observed previously (Chapter 3) further suggesting that the 

two stress conditions may not have been identical.  More specifically, the better recovery 

of Gly, presumably due to photorespiration, indicates less severity of submergence stress 

in the diurnal experiment.   

 Monitoring changes in energy production as a result of submergence and 

desubmergence is key to understanding the metabolic reconfiguration attributed to the 
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presence or absence of the SUB1A gene.  Four TCA cycle intermediates, succinate, 

citrate, fumarate, and malate were measured by GC-MS and changed as a result of either 

submergence, reoxygenation, or both.  In both genotypes, citrate exclusively accumulated 

in both genotypes at 3 d of submergence, decreased moderately after desubmergence (at 

the dusk time point), and gradually re-accumulated during the dark cycle followed by a 

rapid decrease after dawn (Figure 4.4).  The only significant difference between the two 

genotypes occurred after 24 h of recovery, with levels in the M202 variety measuring a 

0.5-fold difference compared to M202(Sub1) (Table 4.3).  The higher levels of citrate in 

the tolerant variety was opposite the trend for many of the other metabolites, suggesting 

that upon desubmergence the tolerant variety is better prepared to resume energy 

production through photosynthesis.7  In contrast, succinate accumulates exclusively in the 

M202 variety during submergence, by a fold change of 1.3.  By dusk after 

desubmergence, however, levels of succinate increase significantly in both genotypes.  

Although the difference is not significant, levels of succinate appear to be greater in the 

tolerant variety compared with the intolerant variety.  From dusk to dawn, relative levels 

of succinate shift to higher levels measured in the intolerant variety (Table 4.3), 

supporting the hypothesis that the TCA cycle in the tolerant variety supports greater flux 

through the cycle, enabling more energy production after desubmergence during the night 

(i.e. when there is no photosynthesis).  Similarly, fumarate does not change during 

submergence but accumulates during re-oxygenation in both varieties.  Although 

fumarate does not appear to change in response to the diurnal cycle in the absence of 

stress (Figure 4.2, Table 4.1), the trends during re-oxygenation appear to be impacted by 
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the diurnal cycle.  In both varieties, fumarate accumulates between desubmergence and 

dusk, increasing 4 and 2 fold for the intolerant and tolerant genotypes, respectively 

(Table 4.3).  Fumarate levels subsequently decreased when measured at the midnight and 

dawn time points, and then increased when measured at 24 hr post desubmergence.  The 

metabolism of fumarate is also related to Asp and Tyr.38  As with the majority of the 

other measured amino acids, Tyr accumulates during submergence stress and decreases 

upon re-oxygenation.  The decrease in Tyr coincides with the accumulation of fumarate 

(Figure 4.3), suggesting the degradation of Tyr to fumarate, however Tyr is also involved 

in protein metabolism and is the precursor of other important metabolites.39  The amino 

acid Asp can also be catabolized to fumarate, but the levels of Asp are indistinct in the 

two genotypes.  Differences in fumarate levels between the genotypes were opposite to 

what was observed for succinate and citrate, with fumarate content 2.1 times greater in 

the M202 variety compared with M202(Sub1), whereas succinate and citrate abundance 

was greater in the M202(Sub1) variety.  The higher levels of fumarate in the intolerant 

variety can be correlated with the higher levels of other amino acids, including Tyr, 

which may permit greater production of fumarate.  Fumarate may also accumulate to a 

greater extent in the M202 variety due to slower flux through the TCA cycle.  As 

discussed in Ch. 1 and Ch. 3, metabolic flux experiments are required to better 

understand the changes to energy production due to the presence of the SUB1A gene 

during and after submergence stress, however these are beyond the scope of the current 

study. 
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 Changes in Met, a metabolite responsible for sulfur transport, over the time course 

of the experiment were similar to the changes detected for other amino acids. Met 

accumulated during submergence, gradually declining during the dark cycle, followed by 

a rapid drop during the light cycle.  Methionine levels in the two genotypes were 

significantly different at midnight, dawn, and 1 d post submergence, with levels in M202 

~1.5-fold higher relative to levels measured from the tolerant variety (Table 4.4).  Met is 

a versatile metabolite, serving as a precursor to metabolites responsible for sulfur 

transport and storage, methylation, and a metabolic inhibitor of ethylene biosynthesis.40-43  

Approximately 80% of the flux of Met has been reported to be directed for S-

adenosylmethionine (SAM) synthesis.44  SMM, an uncommon amino acid generated from 

Met, was also observed to accumulate during submergence followed by a decrease when 

measured at dusk after de-submergence.  During the dark cycle, it appears that 

differences between the two genotypes appear to diverge, with levels of SMM 

accumulating in the M202 variety and not the M202(Sub1) variety.  These differences are 

not statistically significant, but the trend is similar to what is observed for Met.  Because 

the phytohormone ethylene is responsible for the induction of the SUB1A, changes in Met 

and SMM could be important in hormone regulation.5, 41 

 Based on the GC-MS and NMR results, it is difficult to assign specific differences 

in the metabolic reconfiguration occurring during re-oxygenation to the presence or 

absence of the SUB1A gene.  For some metabolites, a clear difference was observed 

between the genotypes during the course of re-oxygenation, particularly at the time points 

during the dark cycle.  For example, shikimate, Met, and Ser diverge at either the 
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midnight or dawn time points following de-submergence. For other metabolites, the 

metabolite response appears to be indifferent between the genotypes or not affected by 

recovery.  For example, malonate levels diverge as a result of submergence but genotypic 

differences remain consistent during the recovery.  Similarly, genotypic differences are 

detected for Glu but during the recovery period, Glu levels converge.  Without 

understanding how photorespiration or carbon and nitrogen flux differs between the 

genotypes and the pathways through which these processes impact metabolism, no firm 

conclusions can be made.  Experiments by Fukao and coworkers showed that the SUB1A 

gene promotes survival when exposed to extended darkness, a common effect of flood 

conditions, with significant differences in starch, sucrose and fructose levels due to the 

presence or absence of the SUB1A gene after 1 d of darkness.7  In the experiment 

presented herein, the plants were desubmerged at midday under ambient light in the 

greenhouse.  This allowed the plants ~6 h of daylight to resume photosynthesis followed 

by a 12 h night.  A longer dark cycle, for example, starting desubmergence at dusk 

instead of midday, might have a different physiological effect on the two genotypes.  

Additional experiments are necessary to further unravel the complex interaction of the 

SUB1A gene with metabolism. 

 4.3.2 RPIP-UPLC-MS Analysis of Phosphorylated Metabolites 

 The role of the SUB1A gene on secondary metabolism was investigated to better 

understand carbon allocation during and after submergence stress.  Specifically, 

trehalose-6-phosphate (T6P) and other phosphorylated components of rice extract were 

profiled by RPIP-UPLC-MS.  Because the phosphorylated monosaccharides 
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Figure 4.6.  Extracted ion chromatograms obtained by RPIP-UPLC-MS from an 

injection of a 20 μM standard mixture of (a) phosphorylated monosaccharides G6P, F6P, 

G1P, and F1P and (b) phosphorylated disaccharides T6P and S6P.  
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glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), glucose-1-phosphate (G1P), and 

fructose-1-phosphate (F1P) have identical masses (m/z 259.14), RPIP-UPLC-MS was 

investigated for its ability to chromatographically resolve these isomers. Figure 4.6a 

shows the extracted ion chromatogram (XIC) of a standard mixture of these four 

phosphorylated monosaccharides.  Although not baseline resolved, RPIP-UPLC 

separated the four phosphorylated monosaccharides, with G6P eluting first, followed by 

F6P, G1P, and finally F1P.   

In this separation, an HSS T3 column (Waters Corp.) was used to separate the 

phosphorylated mono- and disaccharides because the column is more compatible with 

polar analytes.  For analyte elution, 10 mM DBA was used in both the aqueous and 

organic mobile phases as an IPR because of the success others have had with low 

molecular weight compounds.  Water was the aqueous mobile phase and methanol was 

used as the organic mobile phase and the  pH adjusted to a pH meter reading of 7.4 and 8, 

respectively, after addition of DBA.18  The mechanism driving the separation is not 

entirely clear. There are trends in the elution order but multiple mechanisms can be 

responsible for elution and a more detailed study is needed to explore the complex 

interactions encountered in RPIP.17   The phosphorylated disaccharides T6P and Sucrose-

6-phosphate (S6P) were reported by Delatte and coworkers to be detectable in 

Arabidopsis metabolite extracts.14  Because these compounds have the same molecular 

weight (422.27 Da), a standard mixture was injected to determine their elution order.  

Figure 4.6b shows the separation of T6P and S6P.  Although they do not baseline resolve, 
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T6P and S6P are sufficiently separated to allow independent identification and 

quantitation. 

4.3.2.1  Metabolite Profiling of Phosphorylated Metabolites by RPIP-UPLC-MS.  

Figure 4.7a shows a representative TIC taken from a metabolite extract of M202 

shoot tissue at the midday control time point.  Despite sample clean-up and targeted 

extraction of anionic compounds, the chromatogram is complex and a majority of the 

components could not be assigned based on mass spectra alone. Targeted metabolite 

profiling of phosphorylated compounds resulted in the identification and quantitation of 

six metabolites by RPIP-UPLC-MS, including T6P, S6P, G6P, adenosine-5’-

monophosphate (AMP), 6-phosphogluconate (6PG), and 3-phosphoglycerate (3PG).  

Figure 4.7b and 4.7c show the XIC of m/z 421.27 and 259.14, respectively, with the 

identified peaks labeled.  The phosphorylated disaccharides T6P and S6P are readily 

detected in rice tissue, in addition to a third peak eluting after S6P for which the identity 

is unknown.  The same mass and similar elution time as T6P and S6P indicates that the 

third peak might be another phosphorylated disaccharide, such as maltose-6-phosphate or 

maltose-1-phosphate, both of which are products of starch and maltose catabolism, 

however standards are difficult to obtain or not available.45  Lactose-1-phosphate (L1P) is 

another phosphorylated disaccharide with the same mass as T6P and S6P, however 

experiments with a standard determined that L1P is not the identity of the third peak (data 

not shown).  Further experiments are needed to confirm the identity of the third peak. 
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Figure 4.7.  (a) Representative RPIP-UPLC-MS chromatogram of a 20 μL injection of a 

metabolite extract from M202 control shoot tissue.  (b) Extracted ion chromatogram of 

m/z 421.27 showing T6P, S6P, and an unknown peak at retention time 10.44 min.  (c) 

Extracted ion chromatogram of m/z 259.14 showing G6P and two minor peaks that could 

not accurately be identified.   
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 The purpose of these experiments was to determine if T6P was differentially 

regulated in the shoot tissue of submergence tolerant and intolerant rice varieties.  Figure 

4.8 shows the trajectory plots taken from control tissue sampled at midday, dusk, 

midnight, dawn, or midday + 24hr.  The relative T6P levels in the controls were 

statistically indistinguishable in the two genotypes, indicating that the presence of SUB1A 

did not affect T6P levels during the course of normal dark and light cycle (Figure 4.8, 

Table 4.5).  For both genotypes, however, T6P levels increased between dusk and 

midnight, declined between midnight and dawn, recovering between dawn and noon, 

when compared with the initial midday time point. There was a fold increase of ~1.5 at 

dawn compared with the initial midday control (Table 4.5).  One of the roles of T6P in 

plants is to act as a signaling molecule for carbon sensing.  When sugar reserves are 

elevated, T6P levels accumulate and promote growth through the inhibition of SnRK1.8, 

46  Although sucrose levels are at their lowest point in the diurnal cycle, glucose levels 

increase during the dark cycle as sucrose is catabolized, reaching an apex at the dawn 

time point concomitantly with T6P (Figures 4.3 and 4.8, Table 4.2).  Though G6P levels 

remain unchanged (Figure 4.8), elevated levels of glucose would enable flux through 

G6P and uridine diphosphate glucose (UDPG) producing T6P.10  However, the increase 

in T6P immediately before dawn conflicts with a report by Wahl and coworkers showing 

T6P levels increasing and decreasing during the day/night cycle (respectively), 

suggesting that T6P changes in direct response to sucrose levels.9  Further investigation is 

required to fully understand why the T6P trend we observe in rice is opposite to the 

results published by Wahl and coworkers in Arabidopsis.  The response of AMP, 6PG, 
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Figure 4.8.  Trajectory plots from RPIP-UPLC-MS data representing either area 

(arbitrary units) or peak height (counts) for M202 (■) and M202(Sub1) (●).  The time 

points are connected using black (M202) or red (M202(Sub1) lines.  The treatments are 

labeled as Sub Control, Dusk Control, Midnight Control, Dawn Control, and 24Hr 

Control to represent control tissue at each time point.  Each data point is the replicate of 

at least 5 biological replicates and error bars represent the standard deviation.
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Table 4.5.  A comparison of the levels of metabolites in M202 and M202(Sub1) controls determined by RPIP-UPLC-MS analysis. The comparison 

between varieties is represented by fold changes for each diurnal interval in the absence of submergence.  Asterisks indicate significant differences 

at the 95% confidence limit.  ND represents metabolite ratios not determined due to insufficient signal for quantitation.  The “C” at the end of the 

treatment label is used to indicate non-submerged tissue. 

 
 M202 M202(Sub1) M202/M202(Sub1) 
 DuskC:SubC MidnightC:SubC DawnC:SubC 24hrC:SubC DuskC:SubC MidnightC:SubC DawnC:SubC 24hrC:SubC SubC DuskC MidnightC DawnC 24hrC 

T6P 1.2 0.9 1.4* 1.4 1.1 1.0 1.5* 1.2 1.1 1.2 1.1 1.1 1.3 

S6P 1.2 1.0 1.2 1.4 0.9 0.9 1.0 0.8 0.9 1.2 1.0 1.0 1.4* 

G6P 0.8 0.8 1.0 0.7 0.8 0.9 0.9 0.7 0.9 1.0 0.9 1.0 0.9 

6-PG 1.2 1.0 1.0 0.8 1.1 0.8 1.0 1.0 1.4 1.1 1.3 1.0 1.1 

3-PG 0.1* 0.1* 0.1* 0.5 0.1* 0.1* 0.2* 0.8 1.3 1.0 1.3 0.9 0.1 

AMP 1.0 0.9 1.3 1.1 0.8 0.8 0.9 0.9 1.2 0.8 1.1 0.8 1.2 
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Figure 4.9.  Trajectory plots from RPIP-UPLC-MS representing either area (arbitrary 

units) or peak height (counts) for M202 (■) and M202(Sub1) (●).  The time points are 

connected using black (M202) or red (M202(Sub1)) lines.  The treatments are labeled as 

the control (SubC), submerged (Sub), and recovery time points Dusk, Midnight, Dawn, 

and 24hr.  Each data point is the replicate of at least 5 biological replicates and error bars 

represent the standard deviation.
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Table 4.6 A comparison of the levels of metabolites in M202 and M202(Sub1) plants subjected to submergence as determined by RPIP-UPLC-

MS analysis.  The comparison between varieties is represented by fold changes for submergence and diurnal interval post desubmergence.  

Asterisks indicate significant differences at the 95% confidence limit.  ND represents metabolite ratios not determined due to insufficient signal 

for quantitation.  The “C” at the end of the treatment label is used to indicate non-submerged tissue. 

 

 M202 M202(Sub1) M202/M202(Sub1) 

 Sub:SubC Dusk:SubC Midnight:SubC Dawn:SubC 24hr:SubC Sub:SubC Dusk:SubC Midnight:SubC Dawn:SubC 24hr:SubC SubC Sub Dusk Midnight Dawn 24hr 

T6P ND 0.6* 0.6* 0.7* 0.9 ND 1 1 1.1 1.2 1.1 ND 0.6 0.7 0.7* 0.9 

S6P ND 0.7 0.6 0.5* 0.6* ND 0.6 0.6 0.6 0.6 0.9 ND 1 0.8 0.7 0.8 

G6P 1 1 1.1 1.1 1.2 0.9 1 1 1 0.9 0.9 1.1 0.9 1.1 1 1.2 

6-PG 0.9 0.9 1.1 0.7 2.1 0.7 0.8 1.1 1.0 1.3 1.0 1.3 1.0 1.1 0.7 1.7 

3-PG 0.3 0.1 0.1* 0.2* 0.7 0.3* 0.3* 0.2* 0.3* 0.9 1.3 1.2 0.6 0.6 0.7 1.0 

AMP 1.7 
1.1 0.9 0.7 3.7* 1.0 1.0 1.1 0.9 2.7 

1.1 1.4 1.2 1.0 0.8 1.5 
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and S6P are largely unchanged by the diurnal cycle.  Interestingly, S6P accumulates at 

the midday +24 h control time point in the intolerant variety, indicating that the M202 

variety may experience higher levels of starch catabolism in response to re-exposure to 

light.  Levels of S6P in the M202 variety increase by a fold change of 1.5 compared with 

those in the M202(Sub1) variety (Table 4.5).  These differences are intriguing, as the 

same accumulation is not noted for the initial midday control despite the similar 

experiment conditions.  Other experiments are needed to confirm and better resolve these 

findings.  The metabolite 3-PG is a byproduct of glycolysis and carbon fixation.47 Lower 

levels in both genotypes occurred at night during the absence of photosynthesis followed 

by a subsequent accumulation during the light cycle. 

The effect of re-oxygenation on T6P levels was also investigated.  Figure 4.9 

shows the trajectory plots and Table 4.6 reports the fold changes between and within 

genotypes for T6P, S6P, G6P, 3PG, 6PG, and AMP before, during, and at several time 

points after submergence stress.  At 3 d of submergence, levels of T6P decrease below 

the limit of detection for both genotypes, consistent with the upregulation of starch 

catabolism promoted by this stress.5  By dusk after de-submergence, levels of T6P 

accumulate back to pre-stress conditions for the M202(Sub1) variety but to only 60% of 

their initial value for the M202 variety (Table 4.6).  The difference between the two 

genotypes in the reaccumulation of T6P can be related to the relative levels of glucose.  

At the dusk, midnight, and dawn post de-submergence, glucose levels in the two 

genotypes diverged, with the intolerant variety decreasing by 0.7-fold compared to levels 

in the tolerant variety (Table 4.4).  Similarly, the T6P levels are lower in the intolerant 
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variety by a fold change of 0.6 and 0.7 for the dusk and dawn time points, respectively.  

These data suggest that by producing more T6P and thus inhibiting the sucrose non-

fermenting kinases (SnRK1) the intolerant variety is better able to return to normoxic 

conditions, including anabolism and normal plant growth.8, 10, 46 An alternative 

explanation is that T6P levels return more quickly to near-normal levels in the tolerant 

variety due to better recovery of photosynthesis.  This might be because photosynthesis 

upon desubmergence is better in the M202(Sub1) variety, however further experiments 

are needed.  Another factor for consideration is that SUB1A has also been shown to 

influence flowering time when constitutively expressed in rice and Arabidopsis under 

non-stressed conditions.48, 49  Similarly, T6P was shown by Wahl and coworkers to 

regulate flowering in Arabidopsis.9  As a result, we can postulate that higher levels of 

T6P in SUB1A containing rice might also influence or regulate flowering time.  It is 

unclear, however, if the differential regulation of T6P is a direct or indirect result of the 

SUB1A gene, with T6P levels increasing and decreasing in response to glucose levels or 

other stimuli. 

 The other metabolites quantified by RPIP-UPLC-MS were not differentially 

regulated, however there were trends correlated with submergence stress and recovery.  

Both AMP and 6PG accumulated after re-oxygenation only at after 1 d after de-

submergence (Table 4.6).  The metabolite 3PG responded similarly in both control and 

submergence conditions due to the cessation of photosynthesis during dark conditions.  

Interestingly, S6P had similar trends as T6P, decreasing below the limit of detection 

during submergence and increasing at the dusk time point, although at lower levels than   
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Figure 4.10.  Trajectory plots from RPIP-UPLC-MS representing peak height (counts) 

for M202 (■) and M202(Sub1) (●).  The time points are connected using black (M202) or 

red (M202(Sub1)) lines.  (a) Measurements from the diurnal experiment with treatments 

labeled as Sub Control, Dusk Control, Midnight Control, Dawn Control or 24hr Control.  

(b) Measurements after submergence and recovery with treatments labeled as the control 

(Sub Control), submerged (Sub), and recovery time points Dusk, Midnight, Dawn, and 

24hr.  Each data point is the replicate of at least 5 biological replicates and error bars 

represent the standard deviation.
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was measured at the control time point by a fold change of ~0.6 for both genotypes.  A 

longer submergence may cause metabolite levels to diverge between the two genotypes. 

 The trajectory plots for the unknown peak from Figure 4.7b are shown in Figure 

4.10.   During the diurnal cycle, the levels of the unknown are largely indifferent, 

indicating that it is not strongly affected by photosynthesis (Figure 4.10a).  In response to 

submergence, however, levels of the unknown dropped below the limit of detection and 

subsequently increased during the recovery period (Figure 4.10b).  In both cases, levels 

of the unknown metabolite were not different between the genotypes.  Although the 

metabolite was not identified, the decrease in levels of the metabolite during 

submergence correlates with the trends observed for both T6P and S6P (Figure 4.9).  The 

trajectories for these three components are in stark contrast to most of the other detected 

metabolites which are unaffected by submergence (Figures 4.4, 4.5 and 4.9), further 

suggesting that the unknown metabolite may be a phosphorylated disaccharide.  Figure 

4.10 illustrates the power of metabolomics for biomarker discovery in that interesting 

trends in metabolites can be observed, even when their identity is not known a priori. 

This allows the investigator to focus efforts on the identification of those components that 

give a metabolic signature that is responsive to the experimental design. Although, the 

unknown compound was not identified in this work, future experiments to isolate the 

component in sufficient quantity for NMR characterization could provide new insights 

into the metabolic response of rice to submergence stress.  
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4.4 Conclusions 

 The work presented in this chapter further supports the benefits of combining 

NMR, GC-MS, and UPLC-MS to extend our understanding of the metabolic 

reconfiguration of SUB1A containing rice in response to submergence stress and the 

diurnal cycle.  Although this study suggests that under normal light/dark cycles there is 

very little differentiation between the two genotypes, the day/night cycle does have an 

effect on the recovery of the two genotypes.  Sucrose, for example, was different only 

during submergence and at the dawn and after 24 h of recovery.  Differences in glucose 

metabolism were only apparent during levels of low light, with levels appreciably higher 

in the M202(Sub1) variety compared with levels in M202.  The plant metabolite profiles 

reflect changes due to both desubmergence and diurnal cycle, however genotypic 

differences during the recovery period did not compare with those distinguished in 

Chapter 3, perhaps due to the differences in the experimental conditions.  Additionally, 

targeting other classes of metabolites, such as flavonoids, is necessary to for a more 

comprehensive analysis secondary metabolism in response to oxidative stress upon 

reoxygenation.   Further investigation will enhance our understanding of the 

physiological changes associated with submergence, re-oxygenation, and circadian 

rhythms that may be influenced by the SUB1A gene.  

 The quantitation of T6P and other phosphorylated secondary metabolites provided 

a deeper understanding of the role of sugar sensing in submergence survival.  Higher T6P 

levels detected for the tolerant variety during desubmergence is further evidence of better 

carbon management in plants containing the SUB1A gene compared with the M202 
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variety.  Additionally, the differences in T6P levels during re-oxygenation can be 

correlated with the flowering differences observed between SUB1A and non-SUB1A 

containing rice varieties.50  Understanding the correlation of T6P with rice floral 

meristem development and ultimately flowering after submergence stress is not yet well 

understood.  Additionally, a better separation of T6P and S6P is required for more 

confidence in the integration.  Continued investigation of the molecular mechanisms 

involving T6P is necessary to better understand the differences experienced by SUB1A 

and non-SUB1A containing rice. 

In chapter 5, the novel chemometric technique VIZR is introduced to interrogate 

the metabolic differences in urine 1H NMR spectra due to the ingestion of non-dietary 

substances, such as ibuprofen, energy drinks, and alcohol.  This program allows 

individual samples to be discriminated from a library of control urine samples and heat 

maps, projections, and a scoring approach will be used to identify spectral regions 

responsible for discrimination.  Although urine samples were selected for the 

development and evaluation of VIZR, we anticipate that this approach can be extended to 

plant metabolite profiling studies such as those described in this chapter. 
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CHAPTER FIVE 

VIZR - An Automated Chemometric Technique for the Metabolic Discrimination of 

Biofluids 
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Abstract: 

This chapter describes a new chemometric technique, VIZR (Visual Interpretation of Z-

Score Ratios). VIZR is written in the open source code R and can be used to identify 

metabolic differences between individual biosamples and a control group.  To 

demonstrate the capabilities of VIZR, 50 urine samples were collected from healthy 

volunteers; 41 samples were collected randomly following a normal dietary routine and 8 

test samples were collected after dietary supplementation with ibuprofen, alcoholic 

beverages, or an energy drink. A ninth test sample was prepared by 50% dilution of a 

control sample. Sample analysis was conducted by 1H NMR spectroscopy and the 

collected data was subjected to VIZR analysis, which successfully discriminated each of 

the 9 test samples from the 41 control samples. In addition, VIZR analysis revealed the 

NMR spectral regions responsible for the disparity between the individual test samples 

and the control group.  The self-normalizing nature of the VIZR calculation provides a 

robust analysis independent of dilution effects, which is especially important in urine 
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analyses.   Potential applications of VIZR include high-throughput data analysis for 

toxicological profiling, disease diagnosis, and biomarker identification in any type of 

biosample for which a control dataset can be established.  Although demonstrated herein 

for the statistical analysis of 1H NMR data, the VIZR program is platform independent 

and could be applied to digitized metabolic datasets acquired using other techniques 

including hyphenated mass spectrometry measurements.   

 

5.1 Introduction 

 The metabolic analysis of complex biosamples, such as tissues and body fluids, 

through various analytical methods is a growing area of interest due to the desire to 

correlate alterations in metabolism with disease, toxicology and substance abuse.1-4  

Urine and blood plasma or serum are particularly attractive for metabolite analysis 

because they can be obtained simply, in high volume through minimally or noninvasive 

means.5, 6  Urine has the additional advantages of being molecularly stable and provides a 

relatively simple matrix, with minimal levels of protein in most patients.7, 8  As a result, 

urine is widely used for clinical analyses and has been used for metabolite profiling of 

maple syrup urine syndrome,5 propionate metabolism disorders,9  inflammatory bowel 

disease, toxicological profiling studies,10-12 and biomarker discovery.13-15    

 The concentrations of metabolites in biofluids, especially urine, can fluctuate 

significantly based on the hydration of the subject, complicating spectral interpretation 

and correlation of metabolite levels between subjects.  To accommodate the influence of 

dilution, a variety of normalization techniques have been implemented. Sum 
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normalization, a popular approach, is performed by dividing the spectrum into bins (but 

can also be accomplished using individual data points), integrating each bin, and 

summing the integrals of the bins (excluding bins containing solvents and impurities).8, 16  

The integrals of interest are then normalized to the sum, accounting for dilution 

differences between samples.  A disadvantage of sum normalization is that biologically-

induced changes in the levels of the most abundant metabolites can influence the 

normalization constant derived from summing the binned integrals and artificially impact 

the normalized values of less abundant components, even those unaffected by the 

treatment.17  Another approach normalizes the levels of metabolites in urine samples to 

creatinine, however changes in creatinine metabolism can be indicative of kidney disease 

making creatinine normalization unreliable.16, 18  To avoid bias introduced by these 

normalization techniques, Dieterle and coworkers introduced the probabilistic quotient 

normalization (PQN) method which uses the median of calculated quotients generated 

through comparison to a reference spectrum.17  The most frequent quotient is used as the 

dilution factor.  PQN has been widely implemented and shown to be a robust technique  

for dilution correction however it still requires the use of a reference spectrum to adjust 

the integrated values of the spectrum under interrogation. 

 Another challenge in metabolomics analyses is the statistical differentiation of 

samples from control and non-control groups.  The typical metabolomics approach 

utilizes multivariate analysis (MVA) for evaluating differences between sample groups.  

Principal components analysis (PCA) is a popular unsupervised MVA method that 

identifies patterns within a dataset without a priori knowledge of the identity of the 
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individual samples.19  Although useful for identifying global differences within a dataset, 

statistical significance cannot be deduced based on groupings in the PCA scores plot.  

Similarly, partial least squares analysis (PLS) is a supervised MVA technique that is used 

to determine the differences between predefined sample groups, however it also does not 

provide statistical differentiation.20, 21  Untargeted, high-throughput toxicity profiling, 

disease diagnosis, or biomarker discovery requires the interrogation of a sample (or 

samples) from a single individual against a set of samples from a healthy population. 

Both PCA and PLS are unsuitable for determining differences within a dataset when 

there is a low sample size for the unhealthy individual, and analysis using these methods 

can lead to random correlations.22   Artificial neural networks (ANN) have also been used 

for biomarker identification and disease diagnosis.23-25  However, ANN uses a training set 

of samples representing both the healthy and unhealthy patients prior to sample 

interrogation, requiring replicates of both datasets to develop the neural networks.  In the 

absence of well-defined differences between the patient populations, i.e., in experiments 

aimed at biomarker discovery, designing an accurate training set for the neural networks 

to classify the sample is difficult at best. 

To better facilitate the high-throughput analysis of 1H-NMR spectra of biofluids 

for toxicology studies, biomarker discovery and disease diagnosis, we have developed a 

novel chemometric method written in the open source code R for data normalization, 

statistical interpretation, and analysis of biofluid data sets.  Termed VIZR (Visual 

Interpretation of Z-Score Ratios), this technique incorporates self-normalization and 

subsequent z-score analysis to interrogate differences between a single sample and a 
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reference population.  Previous use of z-score analysis by Charlton and coworkers was 

described as an aid in detecting contaminated soft drinks using NMR.26  Their approach 

used z-score analysis for feature selection prior to MVA, reducing the dimensionality of 

the data in question to more accurately determine the features that are different.  They 

were able to accurately determine the presence of contaminants in soft drinks using the 

combination of feature selection using z-scores and MVA, demonstrating the potential of 

z-score analysis for component discrimination in complex mixtures.   

Data analysis with VIZR is performed independently of MVA using a z-score and 

can confidently discriminate samples and the corresponding NMR spectral regions that 

set them apart from a control group.   A similar approach, ratio analysis NMR 

spectroscopy (RANSY), introduced by Wei and coworkers identifies chemically-related 

resonances in a complex spectrum through ratios of peak heights or integrals and their 

coefficient of variation (CV).27   RANSY calculates a pseudo NMR spectrum that 

contains only peaks that are highly correlated, yielding individual metabolite spectra. The 

RANSY technique is useful for the targeted identification of a resonance of interest in an 

NMR spectrum, but unlike VIZR does not distinguish differences between a single 

sample and a control group.   The practical application of VIZR for analysis of 1H NMR 

spectral data is demonstrated by investigating 50 urine samples (41 control samples, and 

9 test samples) collected from 4 male and 3 female volunteers.  
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5.2 Materials and Methods 

5.2.1 Materials and Reagents 

Deuterium oxide was purchased from Cambridge Isotope Laboratories, Inc. 

(Andover, MA).  Sodium-3-trimethylsilyl-propanesulfonic acid-d6 (DSS) was purchased 

from Isotec (St. Louis, MO).  Monobasic and dibasic sodium phosphate and sterile 

specimen cups (90 mL) were purchased from Fisher Scientific (Pittsburgh, PA).  Sodium 

azide was obtained from Sigma-Aldrich (St. Louis, MO).   

5.2.2 Sample Collection and Preparation 

To minimize pH-induced chemical shift changes, a pH 7.3 phosphate buffer 

similar to that described by Beckonert et al. was prepared using 200 mM Na2HPO4 and 

36 mM NaH2PO4 in 25% D2O, which provided the deuterium lock signal.7   DSS and 

sodium azide were added to the buffer to achieve final concentrations of 1 mM.7  Human 

urine sample collection was conducted in accordance with UC Riverside’s Office of 

Research Integrity and the protocol was approved by the Human Research Review Board 

(HS 12-086).  The health of the volunteers was based on their own admission. Volunteers 

were requested to report the use of pharmaceuticals (i.e., pain killers), energy drinks and 

alcohol throughout the course of the study and test samples were so indicated by the 

subjects.  A 670 µL aliquot of urine was transferred immediately after collection to a 1.5 

mL micro-centrifuge tube along with 330 µL of buffer and stored at -80°C until analysis.   

5.2.3 1H NMR Analyses 

1H NMR spectra were measured using a Bruker Avance 14.1 T NMR 

spectrometer equipped with a 5 mm inverse broadband probe with xyz gradients tuned to 
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599.69 MHz.   The magnetic field homogeneity was optimized using up to 28 shims and 

the probe was manually tuned and matched.  Solvent suppression was accomplished 

using excitation sculpting using the Bruker-defined pulse program zgesp with the 

transmitter set on the water resonance.28  The sample temperature was maintained at 298 

K, locked using D2O, and spectra acquired without spinning using digital quadrature 

detection (DQD).  The line-width of DSS for all spectra was less than 1 Hz prior to 

apodization.  Free induction decays were collected into 32 768 points.  A spectral width 

of 11.67 ppm was used with an 11.0 µs 90° pulse.  The acquisition of 16 dummy scans 

preceded the co-addition of 256 transients with a relaxation delay of 1.5 s for a 17.7 min 

experiment time.  

5.2.4 NMR Data Processing 

Spectra were processed using the ACDlabs Spectrus Processor (Advanced 

Chemistry Development, Inc. Toronto, CAN).  Spectra were apodized with an 

exponential function equivalent to 0.5 Hz line broadening, zero-filled to 65 536 points, 

and following Fourier transformation referenced to 0 ppm using the resonance of DSS. 

The processed spectra were manually phased and subjected to automated baseline 

correction using a 2nd order polynomial followed by minor manual adjustment using the 

manual baseline correction feature.  The residual water resonance, urea resonance, and 

regions below 0.5 ppm and above 8.5 ppm were set as dark regions (regions to be 

excluded from analysis) to avoid the inclusion of non-quantifiable resonances such as 

urea and residual water, and buffer components.  After bucketing at 0.02 ppm intervals  
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the processed spectra were exported as *.txt files containing peak intensity with the 

corresponding chemical shift. 

5.2.5 Statistical Analyses using PCA and VIZR 

Data processing was carried out using the freely available program R (version 

2.15.1, Vienna, Austria) using a personal computer.  PCA was conducted using the 

‘prcomp’ function from the ‘stats’ package on the un-normalized binned data with and 

without the bins containing the creatinine resonances.  PCA was also conducted after 

removal of the creatinine resonances on sum normalized and creatinine normalized 

binned data.   VIZR is a package built in-house that utilizes a variety of functions found 

within the ‘miscTools’ package as well as functions in the R basic installation.29, 30  The 

VIZR package is freely available by request to the authors.  Statistical analyses (both 

VIZR and PCA) were conducted blindly to ensure an unbiased evaluation and data labels 

were added only after the statistical analysis was complete. For these experiments, 

samples from volunteers of both genders were included together in the control group.  

When the samples were treated independently by gender, VIZR analysis was unable to 

distinguish between male or female control samples (data not shown). 

5.3 Results and Discussion 

 This chapter describes a chemometrics approach, VIZR, written in the open 

source code R, which uses the z-score for high-throughput discrimination of samples 

compared to a control group. The utility of this approach is demonstrated by analysis of a 

set of 50 urine samples.  The VIZR package is designed to statistically differentiate a 

sample from a population based on discrete regions of the NMR spectrum, but it could 
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also be used for the analysis of other data formats, for example IR or fluorescence 

spectra, or chromatographic results.  For statistical analysis, the data is divided into two 

groups: a reference library generated from a control group and a sample or test group of 

spectra, which are individually compared to the reference library.  The VIZR package 

relies on preprocessed data, requiring each NMR spectrum to be identically zero filled, 

referenced, baseline/phase corrected, and integrated prior to VIZR analysis.  For these 

experiments, data integration was performed through binning using equidistant bin 

lengths of 0.02 ppm. A variety of other integration techniques can be used (e.g. intelligent 

binning, peak fitting, etc.) providing that the data submitted for VIZR analysis is of equal 

dimensions and all datasets are properly aligned so that they have corresponding 

chemical shift values. 

5.3.1 Data Normalization 

Prior to statistical analysis, it is common for data to be normalized to account for 

differences in dilution.  The VIZR method is unique in that it accounts for dilution by  

creating a ratio of each bin with every other bin, resulting in a two-dimensional square 

matrix of length n such that:  
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where (x1 ... xn) are the integrated areas of the corresponding bins (as represented by 

chemical shifts) in ascending order.  These ratios establish a relationship between the area 

of one bin with each of the other bins, eliminating dilution effects.  

5.3.2 Statistical Analysis and Generation of Z-score Matrices and Heat Maps 

Each dataset is represented as a two-dimensional square matrix of length n in 

which every cell within the matrix is treated uniquely, meaning the subsequent 

calculations are performed on the values in each cell of the matrix. Once the data has 

been normalized, the population mean and standard deviation are calculated from the 

control group (or reference library) matrices.  Finally, individual z-score matrices are 

obtained for each of the test group samples by subtracting the average matrix from each 

sample matrix and then dividing that value by the standard deviation matrix as shown in 

Eq. 2 31 

         Eq. 2 

where x represents the matrix for the sample being interrogated,   represents the 

population average matrix,   is the matrix containing the population standard deviations 

for each cell in x, and the elements of the matrix z correspond to differences, in terms of 

the number of standard deviations, of each element of the sample matrix from the 

corresponding population mean.  Interpretation of the matrices is simplified through the 

generation of heat maps based on the absolute value of the z-score allowing a visual 

interpretation of the data.  The threshold and upper limit for coloration of the heat maps is 

user defined so that only significant differences between datasets, as arbitrarily defined 
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by the user, are highlighted in the VIZR plots.  Once the threshold is defined, the 

intervals for coloration are calculated and defined by the VIZR package for the heat map 

display.  For the experiments reported herein, a lower threshold of 13 was chosen such 

that the heat maps of the control group samples are mostly blank while statistically 

significant differences in the test samples are highlighted. 

5.3.3 Generation of Z-score Projection Spectra and the Z-score Scatter Plot 

To simplify the data presentation, each of the matrices can be converted into a 

pseudo one-dimensional NMR spectrum, termed a z-score projection.  This is 

accomplished through summation of each row of the z-score matrix, creating a one-

dimensional plot with the y-axis representing the summed z-score value for a given 

chemical shift along the x-axis.  The z-score projection enables the visual evaluation of 

the spectral differences between a test sample and the control group average. 

A summary of the entire dataset is generated by the z-score scatter plot.  Data 

reduction is accomplished through summation of the absolute values of the z-score 

projection and the results are plotted as the total z value of each sample in a scatter plot.  

e average and standard deviation of the total z value of the control group is determined 

and 1, 2, and 4 lines plotted horizontally to represent the number of standard 

deviations the test samples are from the control group mean. 

A total of 50 urine samples were collected by 4 male and 3 female volunteers. 

Each sample was given a unique identifier and the volunteers recorded the designation of 

the samples as belonging to the control or test groups. The samples were analyzed blind, 
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and the control and test labels added only after the spectral measurements and statistical 

analyses were completed. The test group contains 8 urine samples designated by the 

subjects as resulting from ingestion of the following non-dietary substances in addition to 

their normal diet during the period prior to sample collection: ibuprofen (doses of 800 mg 

were taken by a male subject, 600 mg by one female subject, and two separate 400 mg 

doses by another female subject), alcoholic beverages (two pints consumed by a male 

subject and one pint by a female subject), or a low carbohydrate AMPTM energy drink 

consumed by one male. The alcoholic beverages were ingested during a meal. The 

control group contains 41 urine samples collected at random intervals by the volunteers 

without the ingestion of these non-dietary substances, as reported by the individual. To 

evaluate the influence of sample dilution on the VIZR analysis, one sample from the 

control group was diluted by 50% and included as a ninth test group sample. PCA and 

VIZR were each evaluated to determine whether these methods could identify the effects 

of ibuprofen, alcoholic beverages or energy drinks on the metabolic profile of urine 

samples compared with the controls.  

5.3.4 PCA of Urine Samples 

The unsupervised MVA of the urine samples was conducted using PCA.  PCA 

was selected because it is a useful tool in evaluating the global differences (or 

similarities) between samples within a dataset and is widely applied in metabolomics and 

metabolic profiling investigations.32, 33  Figure 5.1 shows the PCA results for 50 urine 

samples with the bins containing the creatinine resonances removed.  Without data 

normalization the scores plot (Figure 5.1a) shows poor grouping of the control and test 
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samples, indicating that PCA is unable to clearly distinguish differences between the 

groups.  Additionally, the natural variation found within the male and female control 

samples obscures the differences in the test samples.  This lack of discrimination by PCA 

is further emphasized by the loadings plot (Figure 5.1b), which describes the contribution 

of each bin to the separation of the dataset.  The separation along PC1, representing 76% 

of the variance, can be attributed to bins containing the intense NMR resonances of 

citrate and components due to the energy drink and ibuprofen while the separation along 

PC2, representing 8% of the variance, is primarily due to bins corresponding to NMR 

resonances resulting from ingestion of ibuprofen and the energy drink (Figure 5.1b).  

With the exception of citrate, the metabolites identified by the loadings plots are 

primarily associated with the test group, even though PCA does not effectively segregate 

the test samples from the controls. Bins due to additional metabolites may contribute to 

the dispersion of the samples in the PCA scores plot (Figure 5.1a) but are difficult to 

identify due to crowding in the loadings plot (Figure 5.1b).   

As illustrated in Figure 5.2, inclusion of the bins containing the creatinine peaks 

in the unnormalized data produced a different sample distribution in the PCA scores plot 

(Figure 5.2a), however, an improved grouping of the test samples is not obtained. The 

bins corresponding to the creatinine resonances dominate the loadings plot (Figure 5.2b) 

obscuring the effects of other variables. Because data normalization is known to have a 

profound impact on MVA results, we evaluated the effects of normalizing the data to the 

bins containing the creatinine resonances, a commonly employed strategy in urine 

metabolomics studies.18, 16  Normalizing the dataset to creatinine (Figure 5.3) did not  
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Figure 5.1.  Scores and loadings plots from PCA of 50 different urine samples, 41 of 

which are control samples collected at random intervals after following a regular diet (as 

reported by the volunteers), 8 are test samples collected after dietary supplementation of 

ibuprofen, ethanol, or an energy drink, and a 9th test sample was generated by 50% 

dilution of a control sample.  (a) Scores and (b) loadings plots from PCA performed on 

unnormalized data with the integral bins corresponding to creatinine removed. (c) Scores 

and (d) loadings plots from PCA performed on sum normalized data with the integral 

bins corresponding to creatinine removed. The legend in (c) is the same as that used in 

(a). 
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Figure 5.2.   (a) Scores and (b) loadings plots from PCA of 50 different urine samples, 41 

of which are control samples collected at random intervals after following a regular diet 

(as reported by the volunteers), 8 are test samples collected after dietary supplementation 

of ibuprofen, ethanol, or energy drinks, and a 9th test sample was generated by 50% 

dilution of  a control sample.  PCA was performed on the unnormalized data and the 

integral bins corresponding to creatinine are included. 
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Figure 5.3.   (a) Scores and (b) loadings plots from PCA of 50 different urine samples, 41 

of which are control samples collected at random intervals after following a regular diet 

(as reported by the volunteers), 8 are test samples collected after dietary supplementation 

of ibuprofen, ethanol, or energy drinks, and a 9th test sample was generated by 50% 

dilution of a control sample.  PCA was performed on creatinine normalized data and the 

integral buckets corresponding to creatinine are not included. 
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improve sample segregation.  The scores plot (Figure 5.3a) shows overlap of most of the 

control and test samples with two outliers from the female control group while the 

loadings plot (Figure 5.3b) shows that citrate and hippurate were primarily responsiblefor 

sample dispersion. Although creatinine normalization is often used to compensate 

fordilution of urine samples, the results in Figure 5.3 suggest that it is an ineffective 

normalization approach for our data set.   

Sum normalization of the data set was also examined and using this normalization 

method the test and control samples clustered separately in the PCA scores plot (Figure 

5.1c).  Additionally, the loadings plot (Figure 5.1d) highlights the spectral regions 

specific to the test samples responsible for the segregation of the scores plot.  As shown 

in Figure 5.1, sum normalization prior to PCA can aid in sample discrimination, but this  

method also suffers from several drawbacks.  Even for the sum normalized data, it was 

necessary to remove the bins containing the creatinine resonances prior to PCA to 

achieve segregation in the scores plot and to avoid having the loadings plot dominated by 

the bins containing the creatinine resonances (data not shown).  Variation in creatinine 

concentration can be indicative of kidney health18 and removal of these resonances 

reduces the effectiveness of PCA as a statistical platform for untargeted disease 

diagnosis.  The need to remove the bins corresponding to the creatinine resonances to 

better discriminate the sample populations demonstrates influence that the most intense 

resonances can exert on the PCA results.  A similar problem may be encountered in data 

sets that include diabetic patients whose urine samples often have high glucose levels that 

can mask peaks of less abundant metabolites.34 In addition, in a large study designed for 
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biomarker discovery the identity of the test samples are not known and choosing a sample 

normalization method based on data segregation has obvious pitfalls.  The comparatively 

small sample size of the test group may also have contributed to the poor discrimination 

in the PCA scores plot in Figure1a. As suggested by Broadhurst and Kell, PLS analysis is 

also expected to suffer from underrepresentation by the test group and lead to unreliable 

correlations due to the small sample group size.22  Because of the limitations posed by 

MVA methods, VIZR was developed to efficiently discriminate samples that differ 

significantly from a representative population and identify the NMR spectral regions 

responsible for sample discrimination. 

5.3.5 Analysis Using VIZR Heat Maps 

VIZR analysis compares each sample to a control group and data interpretation is 

not dependent on a priori knowledge of the classification of the test sample.  Figure 5.4 

compares the VIZR heat maps generated for representative urine samples collected after 

ingestion of ethanol (Figure 5.4a) and ibuprofen (Figure 5.4b). These heat maps are 

visual representations of the z-score matrix of each sample calculated by the VIZR 

program as described in Eq. 2.  Additional VIZR heat maps for a representative control 

sample and a urine sample collected after ingestion of an energy drink are shown in 

Figure 5.5.    At a standard deviation cutoff of 13, the heat map for the control sample 

(Figure 5.5a) is blank and contains no colored regions that would indicate differences 

compared to the average matrix for the control sample library. In contrast, the urine 

samples collected following ingestion of ethanol (Figure 5.4a), ibuprofen (Figure 5.4b), 

or an energy drink (Figure 5.5b) show a clear divergence from the control samples as  
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Figure 5.4.  Heat maps reflecting z-score differences of urine samples after the ingestion 

of (a) an alcoholic beverage and (b) ibuprofen.  The threshold for coloration (as indicated 

by the legend) was chosen according to the number of standard deviations the bin values 

are from the mean of the control samples: <13 white, 13 - 17 light blue, 17 - 21 dark blue, 

21 - 25 purple, and >25 red. The red vertical line at 6.52 ppm in both figures is due to 

variation in the spectral baseline.  
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Figure 5.5.  Heat maps reflecting z-score differences of (a) a representative control 

sample urine sample and (b) a urine sample taken after the ingestion of an energy drink.  

The threshold for coloration (as indicated by the legend) was chosen according to the 

number of standard deviations that bin values are from the mean of the control samples: 

<13 white, 13 - 17 light blue, 17 - 21 dark blue, 21 - 25 purple, and >25 red. The red 

vertical line in (b) is due to variation in the spectral baseline.  
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evidenced by blue and red coloration along the horizontal axis of the heat map.  The 

vertical streaks observed, such as that at 6.52 ppm in Figure 5.4, result from baseline 

variation and are predominantly observed next to the discarded regions containing the 

residual water (4.5-5.0 ppm) and urea (5.0-6.5 ppm) resonances.  The colored horizontal 

stripes at 1.2 and 3.6 ppm in the heat map in Figure 5.4a  indicate that the intensity of 

these regions, which correspond to the chemical shifts of the CH3 and CH2 protons of 

ethanol, were statistically different from those of the average control population. The 

values used to generate the VIZR heat maps are calculated as a ratio of each bin to the 

bins of all other chemical shifts. For example, the heat map in Figure 5.4a contains a 

horizontal red band at 1.2 ppm for almost all chemical shift values across plot.  This 

indicates that relative to almost all the other bins, the bin at 1.2 ppm due to the CH3 

protons of ethanol, is different from the control group at a standard deviation cutoff of 13.  

Similarly, the bin at 3.61 ppm, which corresponds to the chemical shift of the ethanol 

CH2 resonance, is also different from most of the other bins of the control group, adding 

confidence that the differences highlighted are real.  In Figure 5.4a the regions 

highlighted in the VIZR heat map are chemically related, although this will not 

necessarily be the case.   

In contrast, the heat map in Figure 5.4b for the urine sample following ibuprofen 

ingestion is more complex showing numerous horizontal stripes in the methyl and 

aromatic chemical regions. Three of the horizontal bands at 0.9, 1.4 and 7.3 ppm can be 

attributed to excreted ibuprofen, however, the other regions highlighted in the VIZR heat 

map do not correlate with the spectrum of ibuprofen, indicating that these bins contain 
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resonances of ibuprofen metabolites or endogenous metabolites in biochemical pathways 

influenced by ibuprofen ingestion.35-37  A similar observation can be made for the heat 

map of the urine sample after the ingestion of an energy drink (Figure 5.5b) which 

contains several bands in the aliphatic and aromatic chemical shift regions that are 

highlighted as statistically different from the control group average matrix.  Many 

popular energy drinks contain compounds advertised to increase energy (such as guanine, 

taurine and caffeine) so it is not surprising that a higher abundance of aromatic and 

aliphatic resonances are observed in the urine NMR spectrum following ingestion of an 

energy drink.   

5.3.6 VIZR Z-score Projections 

An alternative way of viewing the output of the VIZR calculation is a z-score 

projection generated by summing each row of the sample z-score matrix. The z-score 

projection is effectively a calculated pseudo one-dimensional NMR spectrum with 

chemical shift plotted along the x-axis and the summed z-score value plotted along the y-

axis. The peaks in the z-score projection highlight the regions of the test sample NMR 

spectrum that differ significantly from the average values of control sample spectra.  

Because absolute values are not used to calculate the z-score projections (as they are for 

the heat maps and the z-score scatter plot), a component absent in the sample but present  

in the controls would appear as a negative peak in the z-score projection.  To illustrate the 

utility of this calculation, Figure 5.6 compares the averaged 1H NMR spectrum of the 

control group (Figure 5.6a), the spectrum of a urine sample taken after ingestion of an 

alcoholic beverage (Figure 5.6b), the z-score projection (Figure 5.6c), and the spectrum 
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of ethanol dissolved in the same buffer as the urine samples (Figure 5.6d).  Despite the 

complexity of the control and test spectra (Figure 5.6a and b, respectively) and the 

crowded nature of the spectral region between 3 and 4.5 ppm, VIZR analysis exclusively 

identified the CH3 (1.18 ppm) and CH2 (3.61 ppm) resonances of ethanol as being 

significantly different from those of the control group average (Figure 5.6a), emphasizing 

the capabilities of VIZR to identify differences even in crowded spectral regions. 

The VIZR z-score projections similarly highlight the differences in urine samples 

collected after the ingestion of ibuprofen (Figure 5.7) and an energy drink (Figure 5.8).  

The z-score projection for the sample taken following ibuprofen (Figure 5.7c) reflects the 

excretion of the parent drug as well as the presence of NMR resonances for other 

metabolites in the aliphatic and aromatic regions of the spectrum (Figure 5.7b).  As in the 

heat map presented in Figure 5.4b, these peaks could be due to the metabolic products of 

ibuprofen, such as the 2-[4-(2-carboxy-2-methylpropyl)-phenyl] propionic acid 

metabolite, oxpentifylline metabolite, or glucuronide conjugates as described by Wilson 

and Nichoslon35-37 or endogenous metabolites whose levels were altered compared to the 

control average as a result of ibuprofen ingestion. Similarly, consumption of the energy 

drink resulted in significant changes in the aliphatic and aromatic regions of the NMR 

spectrum (Figure 5.8b) compared to average control spectrum (Figure 5.8a) and these 

differences are highlighted by the z-score projection (Figure 5.8c).  When compared with 

the NMR spectrum measured for the energy drink (Figure 5.8d), the only resonances that 

are similar to the peaks found in the urine sample are at 1.13ppm, suggesting that many 

of the energy drink components are metabolized prior to excretion.   
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Figure 5.6.  (a) The averaged NMR spectrum of the control group, (b) the spectrum of a 

urine sample after ingestion of an alcoholic beverage (ethanol), (c) the z-score projection 

of the urine ethanol sample, and (d) the 1H NMR spectrum of ethanol dissolved in the 

same buffer as the urine samples.  The z-score projection (c) of this sample highlights the 

CH3 and CH2 peaks of ethanol as significantly different compared to the average 

reference spectrum, even for the CH2 peak which occurs in the crowded region of the 

spectrum.  Figures (a), (b) and (c) were generated by VIZR and the NMR spectrum in (d) 

was added for comparison purposes. 
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Figure 5.7.  (a) The averaged NMR spectrum of the control group, (b) the spectrum of a 

urine sample after ingestion of ibuprofen, (c) the z-score projection of a urine sample 

after ingestion of ibuprofen, and (d) the 1H NMR spectrum of ibuprofen dissolved in the 

same buffer as the urine samples. Figures a, b and c are generated by VIZR and the NMR 

spectrum in (d) was added for comparison purposes.  
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Figure 5.8.  (a) The averaged NMR spectrum of the control samples, (b) the raw NMR 

spectrum of a urine sample taken after ingestion of an AMPTM energy drink (c) the z-

score projection of the urine sample after ingestion of an AMPTM energy drink and (d) the 

spectrum of the AMPTM energy drink diluted in the same buffer as the urine samples.  

Figures (a), (b), and (c) were generated by VIZR and the NMR spectrum in (d) was added 

for comparison purposes. 
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5.3.7 VIZR Z-score Scatter Plot 

The VIZR heat map and z-score projection are useful for discovering the identity 

of resonances in the NMR spectrum (and by inference the chemical components of the 

sample) that differ significantly from those of the controls.  In addition to this qualitative 

analysis, a quantitative statistical assessment is necessary to describe the extent of 

variation within the control group samples and the degree to which the individual test 

samples deviate from the control group average.  Therefore, the VIZR program also 

calculates a z-score scatter plot that can be used for statistical significance testing for each 

member of the control and test groups.  The z-score scatter plot is generated by plotting 

the sum of the absolute value of the z-scores from each z-score matrix as a function of the 

sample number, shown in Figure 5.9.  Lines indicating the value of the summed z-score 

representing 1, 2, or 4 standard deviations () from the control group mean are plotted in 

Figure 5.9 to facilitate significance testing. All of the control group samples lie within 

two standard deviations of the mean in Figure 5.9. Of the 41control urine samples tested, 

only 4 had a summed z-score value greater than one standard deviation of the population 

mean. Because the majority of the control group samples plotted within one standard 

deviation of the mean, a two standard deviation cutoff was applied in Figure 5 and all 

samples falling above the cutoff were investigated for specific metabolic aberrations. 

This analysis was facilitated by the use of VIZR heat maps and z-score projections to 

identify spectral regions responsible for differences between individual samples and the 

control group average. The advantage of using the sum of the z-score values to generate  
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Figure 5.9.  Scatter plot of the total z-value obtained from the matrices of the full data 

set.  The x-axis represents the sample number, with the control samples on the left (up to 

41) and the test samples on the right (42 to 50). The y-axis gives the total z-value for each 

sample.  Horizontal lines representing 1, 2 and 4 standard deviations from the control 

sample mean are included.  Selected labels have been added to facilitate sample 

identification.   
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the z-score scatter plot is that the sum does not depend on the magnitude of the individual 

z-score values for each chemical shift, but instead on the overall difference of each 

sample compared with the mean of the control group.  For example, the z-score sum 

calculated for the urine samples collected after ingestion of ethanol lie more than two 

standard deviations away from the mean of the control population in Figure 5.9.   The 

summed z-scores calculated from the spectra of test samples collected following 

ingestion of ibuprofen or an energy drink also plot more than 2 standard deviations 

awayfrom the population mean, with several samples different by more than 4 .  It is 

important to note that all the test samples plot more than 2 standard deviations of the 

population mean and therefore are discriminated by VIZR as significantly different from 

the control group average.   

The influence of sample concentration on VIZR analysis was investigated by 

diluting a control sample by 50% and including it as a test sample.  The bin ratio 

normalization method used by the VIZR analysis accounts for dilution by calculating a 

ratio of each bin to all other bins.  If a sample is diluted, the bin ratios should remain 

unchanged because the integrated values for each bin will decrease proportionally.  When 

subjected to VIZR analysis, the summed z-score calculated for the diluted sample plotted 

in Figure 5.9 at a y-axis position nearly identical to the undiluted sample and well within 

one standard deviation of the control group mean. This result confirms that the bin ratio 

normalization method used by VIZR adequately accounts for dilution.  Similarly, the heat  
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map and z-score projection of the diluted sample did not highlight any regions that were 

different from the control population (data not shown). 

5.4 Conclusions 

The novel chemometric program, VIZR, is a powerful new approach for the 

analysis of metabolic data sets based on the calculation of z-score matrices.  The VIZR 

method combines bin ratio normalization with z-score analysis to compare data measured 

for a test sample to the average calculated for a representative population. In this study, 

VIZR was used to evaluate the metabolic profiles of test urine samples relative to a 

control population by analysis of 1H NMR spectra.  VIZR analysis successfully 

distinguished individual test samples collected after the ingestion of ibuprofen, alcoholic 

beverages or energy drinks from a group of 41 control urine samples.  VIZR analysis 

identified specific spectral regions that differed in the test sample and control group 

spectra allowing expedited determination of component-level metabolic differences 

between the test and control groups without a priori knowledge of the test sample 

classification or the nature of the sample.   

The VIZR program can readily be extended to problems related to disease 

diagnosis, biomarker detection, and toxicological profiling by identifying specific 

spectral regions containing metabolic abnormalities and to discriminate individual 

samples from a control group. For example, in toxicological studies, VIZR would be 

useful when searching for metabolic perturbations and catabolic intermediates of a dosed 

compound.  Similarly, VIZR can aid biomarker identification and disease detection by 

discriminating individual samples with metabolic aberrations from a control group and 
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highlighting the spectral regions responsible for those differences.  In a clinical setting, 

ranking the samples based on total z-score (Figure 5.9) enables fast and unbiased 

determination of samples that fall outside the normal metabolite profile, regardless of the 

number of metabolites that contribute to these differences.   Because the VIZR technique 

is dependent on preprocessed data, it can be adapted to a variety of other data formats and 

analytical techniques including hyphenated MS measurements, electrophoretic 

separations, UV-Vis, IR, and fluorescence spectra.  
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CHAPTER SIX 

Conclusions and Future Directions 

6.1 Conclusions 

 The work presented herein describing the metabolic reconfiguration of Oryza 

sativa ssp. japonica cv. M202 and M202(Sub1) during abiotic stress will enable a more 

thorough understanding of the responses of plants to abiotic stressors.  Initially correlated 

with prolonged submergence tolerance, the presence of the SUBMERGENCE1A (SUB1A) 

gene has also been shown to increase recovery from drought and tolerance of prolonged 

darkness.  Ironically, plants also experience darkness and drought in conjunction with 

submergence stress and recovery, respectively, although each condition produces a 

specific molecular response.1-4  The experiments described in this dissertation were 

performed to probe to how the presence or absence of the SUB1A gene in otherwise 

genetically identical cultivars influences metabolism of the shoot during and after 

submergence.  In Chapter 2, two submergence time course experiments were conducted 

to explore the metabolic differences of the M202 and M202(Sub1) varieties as 

determined by NMR.  A long term submergence time course, consisting of an initial 

control and 3, 7 and 12 d submergence or 12 d submergence + 1 d recovery, and a short 

term submergence time course, spanning an initial control and 1, 2, and 3 d submergence 

or 3 d submergence + 1 d recovery were performed. During the course of submergence, 

the tolerant M202(Sub1) variety displayed less carbon consumption as evident by higher 

levels of sucrose and lower levels of glucogenic amino acid accumulation as compared to 

the intolerant M202 variety.  Additionally, we reported for the first time, identification of 
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the dipeptide alanylglycine (AlaGly) in rice extracts by NMR spectroscopy. Although 

significant differences were not observed between the two genotypes, levels of AlaGly 

decreased during submergence and did not show a recovery trend after 1 d post 

desubmergence, which is opposite to the trends observed for the majority of the detected 

amino acids.  Previous reports indicate that levels of AlaGly may be affected by the 

diurnal cycle but additional experiments would be necessary to determine whether this 

factor could explain the results presented in Chapter 2.5 

 In Chapter 3, a deeper exploration of rice metabolism in the presence and absence 

of the SUB1A gene was carried out by GC-MS analysis using the tissue from the short 

term experiment discussed in Chapter 2.  As with the NMR results, samples from the 

tolerant M202(Sub1) plants showed less amino acid accumulation than the intolerant 

variety, indicative of decreased catabolism of starch consistent with the quiescence 

strategy associated with expression of the SUB1A gene.  Several metabolites not 

detectable by NMR were also quantified by GC-MS, including the TCA cycle 

intermediates citrate, malate, and succinate, which were differentially accumulated in the 

two genotypes.  Relative levels of citrate and malate were greater in the tolerant variety 

than in the intolerant variety, which may reflect a higher flux through the TCA cycle 

under stress conditions.  Chapter 3 also provides a comparison of the relative merits of 

NMR and GC-MS analyses for the rice tissue samples examined in this study.  Although 

MS detection is generally more sensitive than NMR, hyphenation with GC requires 

metabolites to be volatile or made volatile through derivatization and not all metabolites 

are amenable to derivatization.  AlaGly and S-methyl-methionine were detected by NMR 
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spectroscopy, but were not observed by GC-MS analysis.  Similarly, glutamine, which 

had a high signal-to-noise ratio by NMR spectroscopy, was predominantly below the 

limit of quantitation when analyzed by GC-MS.  These results highlight the benefits of 

analyses employing complementary techniques, such as GC-MS and NMR, in providing 

a more complete metabolic snapshot than can be obtained by a single analytical platform. 

 Chapter 4 expanded the exploration of the rice metabolic submergence response 

through NMR and GC-MS evaluation of the untargeted metabolic profiles of the 

submergence tolerant and intolerant rice varieties during a recovery time course.  This 

chapter also considered dynamics in shoot metabolites over a twenty-four hour period. 

Plants were submerged for 3 d and upon desubmergence harvested immediately or at 

dusk, midnight, dawn, and +24 hr to evaluate the reoxygenation response.  Distinctions 

observed between the genotypes as a result of submergence were consistent with the 

experiments in Chapters 2 and 3, however, the recovery profiles during the dark cycle 

suggested a significant genotypic influence.  For several metabolites, the resulted 

indicated that either reoxygenation, darkness, or a combination of the two conditions 

invoked a separate stress response evident in the metabolic profiles.  Control samples 

were also harvested at corresponding intervals to evaluate the influence of the diurnal 

cycle on recovery and to determine whether the genotypes experienced circadian 

differences.  The diurnal patterns in the relative levels of the detected metabolites were 

mostly indifferent, suggesting that in the absence of stress, the two genotypes are similar.    

Finally, a targeted analysis of phosphorylated and other anionic metabolites was carried 

out using WAX SPE and RPIP-UPLC-MS.  Specifically, the targeted experiments 
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allowed for the relative quantitation of trehalose-6-phosphate (T6P), a signaling 

metabolite involved in sensing carbon availability for ATP production. RPIP-UPLC-MS 

analysis demonstrated that T6P levels fell in both genotypes during submergence. During 

recovery, levels of T6P during the recovery time course were significantly higher in the 

tolerant variety. This result suggests that the tolerant variety is more adept at returning to 

normoxic growth conditions through inhibition of the SnRK1 pathway which drives 

carbon catabolism, thereby reinstating anabolic processes.6-8  The greater levels of T6P in 

the tolerant variety and downstream relationship to SnRK1 pathway inhibition could 

support the higher rate of metabolite assimilation upon reoxygenation compared with the 

intolerant variety, however experiments evaluating transcript accumulation of related 

pathways as well as photosynthetic activity would be required to test this hypothesis. 

 Additionally, Chapter 2, 3, and 4 demonstrate the ability for rice plants, regardless 

of the presence or absence of the SUB1A gene, to utilize the metabolites that accumulate 

during submergence upon desubmergence. During recovery, levels for many of the 

organic acids and amino acids trend toward pre-stressed conditions (i.e. GABA, Citrate, 

Ala, Asn, Asp, Ile, Thr, and Val) The rapid consumption of Ala, by conversion back to 

pyruvate enables the plant to limit overall carbon loss during the stress, as compared to 

the production of ethanol, which can be lost due to efflux from the plant cell or by 

evaporation. The recovery of oxidative phosphorylation, particularly the activity of 

succinate dehydrogenase, is evident from the rapid accumulation of fumarate following 

desubmergence. However, the relative differences between the varieties for some of these 

amino acids increase during recovery, suggesting that the intolerant variety is less 
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capable of re-assimilating the accumulated amino acids than the tolerant variety (i.e. Ala, 

Asp, Gln, Glu, pyroglutamate, Ser, Thr, and Val).  Thus, in addition to carbohydrate 

conservation during submergence stress, SUB1A may enable faster metabolite recycling 

during recovery. Together, these metabolic adjustments of SUB1A-containing plants 

provide a profound ability to survive an extended submergence stress.     

 Lastly, Chapter 5 presents a novel chemometric technique, Visualization of Z-

score Ratios (VIZR), for the examination of biofluid data sets.  Human urine samples 

were collected and evaluated by 1H NMR spectroscopy for the effects produced by 

ingestion of ibuprofen, alcoholic beverages, and energy drinks.  Because of the highly 

variable water content inherent in urine samples, a bin-ratio normalization method was 

developed to account for sample dilution.  The VIZR technique was able to discriminate 

the metabolite profiles of urine samples obtained after ingestion of an alcoholic beverage, 

ibuprofen, or an energy drink.  Furthermore, VIZR was able to identify the NMR spectral 

regions responsible for the disparity between normal samples and those taken after 

ingestion of the supplements.  VIZR is not limited to NMR data but could readily be 

extended to the chemometric analysis of hyphenated MS or spectroscopic results. The 

VIZR technique has potential for high-throughput data analysis for disease diagnosis, 

toxicological profiling, and biomarker identification. 

6.2 Future Directions 

6.2.1 Absolute Quantitation and Metabolic Flux Analysis 

  As discussed in sections 1.2.2 and 1.3.3.2, absolute quantitation in metabolomics 

experiments can provide a more complete understanding of the biological system being 
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investigated.9  For NMR spectroscopy, absolute quantitation requires well-resolved 

resonances of an internal standard. Since most measurements utilize an internal standard 

as a chemical shift reference, this does not pose a limitation.  Indeed, a significant 

advantage of NMR over other techniques, including MS and spectroscopic methods, is 

that a single standard can be used for quantitation of every signal in the spectrum. 

Absolute quantitation by NMR spectroscopy requires the nuclei to be fully relaxed prior 

to each scan using a recycle period of at least 5 times the longest longitudinal (T1) 

relaxation rate, limiting the throughput of NMR metabolomics experiments.  Absolute 

quantitation with MS-based methods is more challenging.  The most reliable method 

relies on addition of an isotopically labeled analog of each analyte directly into every 

sample analyzed.  Isotopically labeled compounds, however, are expensive and are not 

available for all analytes of interest in a metabolomics experiments.  Despite these 

challenges, the use of absolute quantitation in metabolomics studies allows for a direct 

comparison of metabolite levels between experiments without the need for normalization, 

and will likely become more prominent as the field matures. 

 Metabolomics experiments focus on the steady state change of metabolite levels 

in response to biotic or abiotic stimuli.  However, most metabolites are connected 

through different biochemical pathways and the activation or inactivation of these 

pathways is important to understanding how the organism responds to the stress.10  For 

example, alanine (Ala) is a product of pyruvate metabolism and an increase in glycolysis 

can result in an accumulation of Ala.11  Similarly, Ala can also be a nitrogen sink.  

Vanlerberghe and coworkers demonstrated that during anaerobic conditions in green alga 
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almost all the assimilated ammonium was retained by Ala synthesis.12  In our 

experiments, the accumulation of Ala is most likely driven by increased glycolysis during 

anaerobic metabolism.11, 13   Changes in glutamine and glutamate, metabolites correlated 

with nitrogen metabolism, are also observed but it is unclear how nitrogen metabolism is 

affected and if Ala is acting as both a nitrogen and carbon sink.  To understand how 

different biochemical pathways are affected, particularly nitrogen and carbon 

metabolism, metabolic flux analysis (MFA) will need to be carried out.  Specifically, 

experiments using pre-exposure to 15N labeled nitrate and 13C labeled glucose can be 

carried out using either MS or NMR in submergence stressed plants.  Subsequent 

metabolite analysis will reveal how and where the two genotypes store nitrogen during 

submergence stress.  Additionally, by using 13C labeled glucose, flux through glycolysis 

and the TCA cycle will provide a more detailed understanding how energy production is 

affected in the two genotypes during submergence stress.  

6.2.2 Targeted Metabolite Profiling 

 The targeted profiling approach presented in Chapter 4 was effective for 

quantifying low levels of the T6P, however, it was necessary to use the ion count at the 

peak apex for quantitation rather than peak area because of poor peak shape and the 

inability to completely resolve T6P from sucrose-6-phosphate (S6P).  To improve the 

quantitation of T6P, the chromatographic separation will have to be improved.  One 

possibility is to explore the use of different ion pairing reagents to alter the retention 

characteristics of the analytes and reduce peak tailing.14, 15  Alternative chromatographic 

methods could also be adapted for the targeted separation of T6P.  Torano and coworkers 
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reported the use of HILIC for the analysis of T6P, however this method was optimized at 

pH 12.0 which is well above the recommended pH range of the column, potentially 

reducing the column lifetime.16  Other columns and mobile phase additives could be 

examined for their ability to improve the HILIC separation for the desired analytes and a 

detailed exploration will likely be required to arrive at a suitable separation for T6P and 

other phosphorylated metabolites.17   

 Targeted profiling of other secondary metabolites will increase our understanding 

of the systemic response of rice and other crops to abiotic stress.  For example, 

anthocyanins and other flavonoids are known to have antioxidant functions.18 Fukao and 

coworkers suggested that reactive oxygen species (ROS), which are known to accumulate 

during reoxygenation after submergence and drought are mediated by the SUB1A gene.3  

Understanding how flavonoids and other phenolic compounds are regulated during and 

after submergence stress would provide insights into the greater capacity of SUB1A 

containing plants to tolerate ROS stress.  Additionally, UDP-glucose, which is the 

biosynthetic precursor for T6P, has been implicated in the flavonoid biosynthesis 

pathways responsible for flower color.19  Unraveling the complex biochemical 

relationships between secondary metabolites will enable a more complete understanding 

of the stress response and survival mechanisms of SUB1A rice. 

6.2.3 Understanding the Effect of SUB1A on Metabolism in Rice during Drought and 

extended Darkness 

 Fukao and coworkers reported that the presence of the SUB1A gene confers 

greater tolerance to drought and extended darkness compared with non-SUB1A 
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containing rice varieties.3  In Chapter 4, we reported negligible genotypic differences 

during the diurnal cycle under normal growth conditions, however, during submergence 

stress crops often endure a period of extended darkness due to water turbidity.  To tease 

apart the effects of light stress and submergence stress, the metabolite profiles of M202 

and M202(Sub1) could be evaluated during extended darkness.  Additionally, the two 

genotypes should be evaluated for differences their metabolic response to drought stress.  

Fukao and coworkers observed that under extended drought, a majority of the plant tissue 

from both genotypes dies, but the recovery of the M202(Sub1) variety occurred from 

meristem, generating new leaves while the older leaves died.  To further these studies, 

available genotypes that differ in the presence or absence of a constitutively expressed 

SUB1A gene might also be used.1  Understanding how the metabolism of the two 

genotypes respond to drought will further our understanding of the systemic effect 

SUB1A has during different stresses. 

6.2.4 Continued Development of Chemometric Methods 

 Increasing the availability and sophistication of data analysis software will 

increase the utility of analytical techniques for biomarker identification, disease 

diagnosis, and toxicological profiling.  In Chapter 5 we reported the use of z-scores for 

discriminating individual test samples from a control group.  In addition to 

discrimination, the VIZR program highlights the spectral regions that differ significantly 

from the control population and scores these differences for quantitative comparison.  To 

better facilitate biomarker identification, VIZR analysis can be extended beyond flagging 

spectral regions of interest to identification of the specific metabolic components that are 
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responsible for these differences.  The ratio of the resonance intensities of two different 

nuclei from the same compound is fixed for any concentration, providing that the spectra 

have a sufficient signal-to-noise ratio.  Because the VIZR technique uses the bin-ratio 

normalization method, the z-score values for all resonances associated with a metabolite 

should be similar.  A spectral library for all known metabolites can be generated, and the 

intensity-ratios for the resonances of the standards determined with corresponding 

chemical shift information.  Extension of the VIZR program to automatically compare 

the intensity-ratios/ppm values of the library with the highlighted regions from a sample 

would provide putative metabolite identification. 

 The VIZR method can also be adapted for use with data sets produced by other 

analytical techniques, such as HPLC-MS.  Existing metabolomics processing programs, 

such as MassLynx (Waters Corp, Milford, MA) and XCMS20 automatically align and 

integrate mass spectral data across several experiments.  The metabolite identities are 

conserved as mass-retention time pairs, so that the integrated area for a mass at a given 

retention time can be later correlated with a metabolite.  VIZR can be easily adapted to 

utilize mass-retention pairs instead of chemical shift information for data visualization.  

The only requirement for VIZR analysis is that the data be two dimensional, containing 

both quantitative and spatial information.  One reason that VIZR was written in the open-

source code R was to allow for other investigators to adapt this approach and use it in 

ways that have not yet been envisioned. It will be interesting to see what applications this 

tool may find over the next decade.  
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Appendix 1 

 

Script for Processing Metabolite Data 

 

MetabMaster<-function(Dir,datafile,Genotype1,Genotype2){ 

 

 library(miscTools) 

 library(gplots) 

 setwd(Dir) 

 datframe<-read.delim(datafile,header=T) 

 header<-read.delim(datafile,header=F) 

 header <- header[1,] 

 ncol(datframe) -> n 

 data5 <- NULL 

 dataSummary <- NULL 

 xu<-datframe$Treatment[!duplicated(datframe$Treatment)] 

 length(xu) -> xn 

 for (a in 1:xn){ 

 b<-xu[a] 

 for (i in 4:n){ 

  d<-subset(datframe, datframe$Treatment==b) 

  dAnova <- oneway.test(d[,i]~Genotype, data=d) 

  data3<-dAnova$p.value 

  data4<-as.matrix(data3) 

  Q<-paste(Genotype1,Genotype2) 

  row.names(data4)<-rownames(Q) 

  colnames(data4)<-header[,i] 

 data5 <- cbind(data5, data4)} 

 data5 <- insertCol(data5, 1, b,cName="Treatment") 

 dataSummary<-rbind(dataSummary,data5)  

 data5 <- NULL} 

 

 Genotype<-datframe$Genotype[!duplicated(datframe$Genotype)] 

 xGenotype <- length(Genotype) 

 Control<-subset(datframe, datframe$Treatment==xu[1]) 

 datSummary<-NULL 

 dat1<-NULL 

 dat2<-NULL 

 s<-NULL 

 for (z in 1:xGenotype){ 

  p<-NULL 

  h<-Genotype[z] 
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  controlname<-xu[1] 

  m<-subset(datframe, datframe$Genotype==h) 

  p<-subset(Control, Control$Genotype==h) 

   for(a in 2:xn){ 

   s<-NULL 

   b<-xu[a] 

   mm<-subset(m, m$Treatment==b) 

   s<-rbind(p,mm) 

    for(i in 4:n){ 

     mAnova<-oneway.test(s[,i]~Treatment, data=s) 

     data2<-mAnova$p.value 

     data2<-as.matrix(data2)  

     dat1<-cbind(dat1, data2)} 

     QR<-paste(controlname,b) 

     row.names(dat1)<-QR 

    dat1<-insertCol(dat1, 1, h) 

    dat2<-rbind(dat2, dat1) 

    dat1<-NULL} 

    datSummary<-rbind(datSummary, dat2) 

    dat2<-NULL} 

 

 dataSummary<-rbind(dataSummary, datSummary) 

 write.table(dataSummary, "CompiledAnovaOutPvalues.txt", sep="\t", 

col.names=NA, quote=F) 

 

 ###Average and Standard Deviations of each datframe.data.data.data/Treatment 

 dat2summary<-NULL 

 dat3summary<-NULL 

 dat4summary<-NULL 

 for (z in 1:xGenotype){ 

  h<-Genotype[z] 

  m<-subset(datframe, datframe$Genotype==h) 

  for(a in 1:xn){ 

   b<-xu[a] 

   mm<-subset(m, m$Treatment==b) 

    for (i in 4:n){ 

    variable<-mm[,i] 

    Avg<-mean(variable, na.rm=T) 

    Avg<-as.matrix(Avg) 

    StDev<-sd(variable, na.rm=T) 

    colnames(Avg)<-header[,i] 

    allfiles <-cbind(Avg, StDev) 

    dat2summary<-cbind(dat2summary, allfiles) 
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    allfiles<-NULL} 

    dat2summary<-insertCol(dat2summary, 1, mm[1,2], 

cName="Treatment") 

    dat4summary<-rbind(dat4summary, dat2summary) 

    dat2summary<-NULL} 

   dat4summary<-insertCol(dat4summary, 1, m[1,1], 

cName="Genotype") 

   dat3summary<-rbind(dat3summary, dat4summary) 

   dat4summary<-NULL} 

  write.table(dat3summary, "CompiledSummary.txt", sep="\t", 

col.names=NA, quote=F) 

 

  ###Generate table of ratios 

 ncol.dat3summary<-ncol(dat3summary) 

 ratios<-dat3summary[,seq(3,ncol(dat3summary),2)] 

 factors<-dat3summary[,1:2] 

 ratios<-cbind(factors,ratios) 

 header2<-as.matrix(colnames(dat3summary)) 

 header3<-header2[seq(3,ncol(dat3summary),2),] 

 ratios<-data.frame(ratios) 

 nRatios<-ncol(ratios) 

 ddRatio2<-NULL 

 ddRatio3<-NULL 

 for (a in 1:xn){ 

 b<-xu[a] 

 for (i in 3:nRatios){ 

  d<-subset(ratios,ratios$Treatment==b) 

  d1<-subset(d, d$Genotype==Genotype1) 

  d2<-subset(d, d$Genotype==Genotype2) 

  dd1<-as.matrix(d1[,i]) 

  dd1<-as.numeric(dd1) 

  dd2<-as.matrix(d2[,i]) 

  dd2<-as.numeric(dd2) 

  ddRatio<-dd1/dd2 

  ddRatio<-as.matrix(ddRatio) 

  colnames(ddRatio)<-header3[(i-2)] 

 ddRatio2 <- cbind(ddRatio2, ddRatio)} 

 paste(Genotype1,Genotype2)->Q 

 rownames(ddRatio2)<-Q 

 ddRatio2 <- insertCol(ddRatio2, 1, b,cName="Treatment") 

 ddRatio3<-rbind(ddRatio3,ddRatio2)  

 ddRatio2 <- NULL} 
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 ratioControl<-subset(ratios, ratios$Genotype==Genotype[1]) 

 wGenRatio1<-NULL 

 wGenRatio2<-NULL 

 allRatios<-NULL 

 for (a in 1:xGenotype){ 

 gen<-Genotype[a] 

 control1<-subset(ratioControl, ratioControl$Genotype==Genotype[a]) 

 gen1<-subset(ratios, ratios$Genotype==gen) 

 gen1Control<-subset(gen1, gen1$Treatment==xu[1]) 

  for(b in 2:xn){ 

  treatment1<-subset(gen1, gen1$Treatment==xu[b]) 

   for (i in 3:nRatios){ 

   wGen1<-as.matrix(treatment1[,i]) 

   wGen1<-as.numeric(wGen1) 

   wGen2<-as.matrix(gen1Control[,i]) 

   wGen2<-as.numeric(wGen2) 

   wGenRatio<-wGen1/wGen2 

   wGenRatio<-as.matrix(wGenRatio) 

   colnames(wGenRatio)<-header3[(i-2)] 

   wGenRatio1 <- cbind(wGenRatio1, wGenRatio)} 

   rownames(wGenRatio1)<-Genotype[a] 

   wGenRatio1<- insertCol(wGenRatio1, 1, xu[b]:xu[1], 

cName="Treatment") 

   wGenRatio2 <- rbind(wGenRatio2, wGenRatio1) 

   wGenRatio1<-NULL} 

 allRatios<-rbind(allRatios, wGenRatio2) 

 wGenRatio2<-NULL} 

 allRatios2<-rbind(ddRatio3, allRatios) 

 write.table(allRatios2,"Ratios.txt",sep="\t",quote=F, col.names=NA) 

  

 

 

###Generate Plots (Trajectories) 

dat<-read.table("CompiledSummary.txt", sep="\t", header=T) 

forheader<-read.table("CompiledSummary.txt", sep="\t", header=F) 

nn<-length(dat) 

forheader<-forheader[,4:nn] 

graph_title<-forheader[1,] 

dat2<-subset(dat, dat$Genotype==Genotype1) 

dat2<-dat2[,4:nn] 

dat3<-subset(dat, dat$Genotype==Genotype2) 

dat3<-dat3[,4:nn] 

xaxis<-dat$Treatment[!duplicated(dat$Treatment)] 
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no<-length(dat3) 

dat4<-NULL 

for (i in seq(1,no,2)){ 

minval1<-dat2[,i]-dat2[,(i+1)] 

minval1<-min(minval1) 

minval2<-dat3[,i]-dat3[,(i+1)] 

minval2<-min(minval2) 

minval<-cbind(minval1,minval2) 

minval<-min(minval) 

maxval1<-dat2[,i]+dat2[,(i+1)] 

maxval1<-max(maxval1) 

maxval2<-dat3[,i]+dat3[,(i+1)] 

maxval2<-max(maxval2) 

maxval<-cbind(maxval1,maxval2) 

maxval<-max(maxval) 

g_range<-range(minval, maxval) 

plot_dat<-plotCI(x=dat2[,i], pch=19, uiw=dat2[,(i+1)], lty=1, type="o", gap=0, xaxt="n", 

barcol="black", xlab="Treatment",  ylim=g_range, ylab="Relative Normalized Area", 

main=graph_title[1,i]) 

plot_dat<-plotCI(col=par("red"), barcol="red",x=dat3[,i], pch=21, uiw=dat3[,(i+1)], 

lty=1, type="p", gap=0, xaxt="n",add=TRUE) 

axis(1, at=1:length(xaxis), labels=xaxis) 

lines(dat3[,i],lty=2, type="o", lwd=1) 

legend(1,g_range[2],c(Genotype1,Genotype2),cex=0.8, pch=c(19,21), lty=1:2) 

dat4<-paste("Trajectory_", graph_title[1,i], ".pdf",collapse=NULL) 

a<-list(savePlot(dat4, type="eps", dev.cur())) 

dev.copy(device=pdf, file=dat4) 

dev.off() 

dat4<-NULL} 

} 
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Appendix 2 

 

VIZR Script 

 

vizr <- 

function(Dir,fileR,fileS,writeref,writesam,lo,hi,ppm,negval,input){ 

setwd(Dir) 

require(miscTools) 

if (input=="mnova") { 

read.table(fileR,sep="\t") -> dat 

(dat[1,seq(3,ncol(dat),4)]+dat[1,seq(4,ncol(dat),4)])*0.5->e 

rev(e)->f 

dat[,seq(6,ncol(dat),4)]->z 

 

 

} 

if (input=="acd") { 

read.table(fileR,sep="\t") -> z 

z[1,c(-1,-2)]->nameR 

z[-1,-1]->z 

 

zz <- gsub("\\[|\\.\\.|\\]", "", as.character(z[,1])) 

sapply(strsplit(zz, "  "), function(x)mean(as.numeric(x)))->z[,1] 

z[order(z[,1],decreasing=TRUE),]->z 

rm(zz) 

t(z[,1])->e 

rev(z[,1])->f 

t(z)->z 

z[-1,]->z 

} 

 

else {(stop ("invalid input type"))} 

 

 

class(z)<-"numeric" 

n<-ncol(z) 

Col1<-matrix(f) 

Col1<-insertRow(Col1,1,"") 

Col1<-t(Col1) 

Row1<-matrix(e) 

data2<-NULL 

data1<-NULL 
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write.table(z,"ReferenceFilesprocessed.txt",sep = "\t", quote = F) 

DirR<-paste(Dir,"ReferenceMatrix",sep="/",collapse=NULL) 

dir.create(DirR) 

if(negval){ DirA<-paste(DirR,"Not_AbsVal",sep="/",collapse=NULL) 

dir.create(DirA) 

} 

setwd(DirR) 

 

ncol(z) -> n 

nrow(z) -> m 

 

 

if(writeref) {LstRatios<-list() 

for (d in 1:m) { 

for (a in n:1) { 

for (b in 1:n) { 

cbind(data2, ((z[d,a])/(z[d,b])))->data2 

 

} 

rbind(data1,data2)->data1 

data2<-NULL 

} 

 

data4<-paste("ReferenceMatrix_",d, ".txt",collapse=NULL) 

write.table(data1, file=data4, sep="\t", row.names=F, col.names=F, quote=FALSE, 

append=FALSE)  

LstRatios[[d]]<-data1 

data1<-NULL 

} 

}else {LstRatios<-list() 

for (d in 1:m) { 

for (a in n:1) { 

for (b in 1:n) { 

cbind(data2, ((z[d,a])/(z[d,b])))->data2 

 

} 

rbind(data1,data2)->data1 

data2<-NULL 

} 

 

LstRatios[[d]]<-data1 

data1<-NULL 

} 
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} 

data_list<-LstRatios 

data_files<-LstRatios 

 

y<-Reduce("+",data_list) 

g<-y/m 

avg_matrix <- g 

 

h<-as.matrix(g) 

h<-insertRow(h,1,Row1) 

h<-insertCol(h,1,Col1)   

 

write.table(h, "Avg_Matrix.txt", sep="\t") 

 

data_list2 <- NULL 

for (i in 1:m){ 

data_list2[[i]] <- data_list[[i]]-g} 

for (i in 1:m){ 

data_list2[[i]] <- data_list2[[i]]^2} 

 

y <- Reduce("+", data_list2) 

y <- y/(m-1) 

y <- sqrt(y) 

sd_matrix <- y 

 

h<-as.matrix(y) 

h<-insertRow(h,1,Row1) 

h<-insertCol(h,1,Col1) 

 

write.table(h, "SD_Matrix.txt", sep="\t") 

 

for (b in 1:m){ 

for (i in 1:n){ 

 

for (a in 1:n){ 

 

data_files[[b]][(i),(a)]<-(data_files[[b]][(i),(a)])-(avg_matrix[(i),(a)]) 

} 

} 

} 

data_files_write<-list() 

for (b in 1:m){ 

for (i in 1:n){  
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for (a in 1:n){ 

 

data_files[[b]][(i),a]<-(data_files[[b]][(i),a])/(sd_matrix[(i),a]) 

} 

  

} 

 

as.matrix(nameR[b])->dat.name 

if(negval){ setwd(DirA) 

data_files_write[[b]]<-data_files[[b]] 

data_files_write[[b]]<-insertRow(data_files_write[[b]],1,Row1) 

data_files_write[[b]]<-insertCol(data_files_write[[b]],1,Col1) 

data4<-paste("ZScoreRefMatrix_notAbs_", dat.name, ".txt",collapse=NULL) 

gsub(" ", "", data4)->data4 

write.table(data_files_write[[b]], file=data4, sep="\t", row.names=F, col.names=F, 

quote=FALSE, append=FALSE) 

setwd(DirR) 

} 

data_files[[b]]<-abs(data_files[[b]]) 

data_files_write[[b]]<-data_files[[b]] 

data_files_write[[b]]<-insertRow(data_files_write[[b]],1,Row1) 

data_files_write[[b]]<-insertCol(data_files_write[[b]],1,Col1) 

data4<-paste("ZScoreRefMatrix_Abs_", dat.name, ".txt",collapse=NULL) 

gsub(" ", "", data4)->data4 

write.table(data_files_write[[b]], file=data4, sep="\t", row.names=F, col.names=F, 

quote=FALSE, append=FALSE) 

} 

 

par(cex.axis=0.6, mar=c(5,4,4,5), xpd=TRUE) 

for (b in 1:m){ 

as.matrix(nameR[b])->dat.name 

data_files[[b]]->x 

Bot<-as.character(f) 

Side<-as.character(e) 

length(f)->nS 

Ticks<-seq(0,1,1/(nS-1)) 

j<-floor((2*0.06/ppm)) 

Ticks<-Ticks[seq(j,length(Ticks),j)] 

Bot<-Bot[seq(j,length(Bot),j)] 

Side<-Side[seq(j,length(Side),j)] 

 

x[-1,-1]->x 
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hi->x[x>=hi] 

HeatBrk<-seq(lo,hi,((hi-lo)/5)) 

MyCol<-gray((4:0)/4) 

MyCol=c("#FFFFFF","#66FFFF","#3366FF","#663399","#990000") 

data5<-paste("ZScoreRefColorHeatmap_",dat.name, ".pdf",collapse=NULL) 

gsub(" ", "", data5)->data5 

image(x, col=MyCol, breaks=HeatBrk, axes = FALSE) 

axis(2,las=2, at=Ticks, labels = Side, tick = TRUE) 

axis(1,las=2, at=Ticks, labels = Bot, tick = TRUE) 

legend(x=1.0,y=0.8,legend=HeatBrk[-1],fill=MyCol,bty="n",cex=0.5) 

dev.copy(device=pdf, file=data5, height=8, width=8) 

dev.off()} 

 

setwd(Dir) 

DirS<-paste(Dir,"Samples",sep="/",collapse=NULL) 

dir.create(DirS) 

if(negval){ DirN<-paste(DirS,"Not_AbsVal",sep="/",collapse=NULL) 

dir.create(DirN) 

} 

 

if (input=="mnova") { 

read.table(fileS,sep="\t") -> dat 

(dat[1,seq(3,ncol(dat),4)]+dat[1,seq(4,ncol(dat),4)])*0.5->e 

rev(e)->f 

dat[,seq(6,ncol(dat),4)]->z 

 

 

} 

if (input=="acd") { 

read.table(fileS,sep="\t") -> z 

z[1,c(-1,-2)]->nameS 

z[-1,-1]->z 

zz <- gsub("\\[|\\.\\.|\\]", "", as.character(z[,1])) 

sapply(strsplit(zz, "  "), function(x)mean(as.numeric(x)))->z[,1] 

z[order(z[,1],decreasing=TRUE),]->z 

rm(zz) 

t(z[,1])->e 

rev(z[,1])->f 

t(z)->z 

z[-1,]->z 

} 

 

else (stop ("invalid input type")) 
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class(z)<-"numeric" 

if (is.matrix(z)=="FALSE"){ 

as.matrix(z)->z 

t(z)->z} 

n<-ncol(z) 

m<-nrow(z) 

Col1<-matrix(f) 

Col1<-insertRow(Col1,1,"") 

Col1<-t(Col1) 

Row1<-matrix(e) 

data2<-NULL 

data1<-NULL 

setwd(DirS) 

write.table(z,"SampleFilesprocessed.txt",sep = "\t", quote = F) 

 

if(writesam){LstRatios<-list() 

 

for (d in 1:m) { 

for (a in n:1) { 

for (b in 1:n) { 

cbind(data2, ((z[d,a])/(z[d,b])))->data2 

 

} 

rbind(data1,data2)->data1 

data2<-NULL 

} 

 

data4<-paste("SampleMatrix_",d, ".txt",collapse=NULL) 

 

write.table(data1, file=data4, sep="\t", row.names=F, col.names=F, quote=FALSE, 

append=FALSE)  

LstRatios[[d]]<-data1 

data1<-NULL 

} 

}  else {LstRatios<-list() 

for (d in 1:m) { 

for (a in n:1) { 

for (b in 1:n) { 

cbind(data2, ((z[d,a])/(z[d,b])))->data2 

 

} 
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rbind(data1,data2)->data1 

data2<-NULL 

} 

 

LstRatios[[d]]<-data1 

data1<-NULL 

} 

} 

 

data_files<-LstRatios 

 

for (b in 1:m){ 

for (i in 1:n){ 

 

for (a in 1:n){ 

 

data_files[[b]][(i),(a)]<-(data_files[[b]][(i),(a)])-(avg_matrix[(i),(a)]) 

} 

} 

} 

data_files_write<-list() 

for (b in 1:m){ 

for (i in 1:n){  

 

for (a in 1:n){ 

 

data_files[[b]][(i),a]<-(data_files[[b]][(i),a])/(sd_matrix[(i),a]) 

} 

  

} 

as.matrix(nameS[b])->dat.name 

if(negval){ setwd(DirN) 

data_files_write[[b]]<-data_files[[b]] 

data_files_write[[b]]<-insertRow(data_files_write[[b]],1,Row1) 

data_files_write[[b]]<-insertCol(data_files_write[[b]],1,Col1) 

data4<-paste("ZScoreMatrix_notAbs_", dat.name, ".txt",collapse=NULL) 

gsub(" ", "", data4)->data4 

write.table(data_files_write[[b]], file=data4, sep="\t", row.names=F, col.names=F, 

quote=FALSE, append=FALSE) 

setwd(DirS) 

} 

data_files[[b]]<-abs(data_files[[b]]) 

data_files_write[[b]]<-data_files[[b]] 
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data_files_write[[b]]<-insertRow(data_files_write[[b]],1,Row1) 

data_files_write[[b]]<-insertCol(data_files_write[[b]],1,Col1) 

data4<-paste("ZScoreMatrix_Abs_", dat.name, ".txt",collapse=NULL) 

gsub(" ", "", data4)->data4 

write.table(data_files_write[[b]], file=data4, sep="\t", row.names=F, col.names=F, 

quote=FALSE, append=FALSE) 

} 

 

par(cex.axis=0.6, mar=c(5,4,4,5), xpd=TRUE) 

for (b in 1:m){ 

as.matrix(nameS[b])->dat.name 

data_files[[b]]->x 

Bot<-as.character(f) 

Side<-as.character(e) 

length(f)->nS 

Ticks<-seq(0,1,1/(nS-1)) 

j<-floor((2*0.06/ppm)) 

Ticks<-Ticks[seq(j,length(Ticks),j)] 

Bot<-Bot[seq(j,length(Bot),j)] 

Side<-Side[seq(j,length(Side),j)] 

 

x[-1,-1]->x 

hi->x[x>=hi] 

HeatBrk<-seq(lo,hi,((hi-lo)/5)) 

MyCol=c("#FFFFFF","#66FFFF","#3366FF","#663399","#990000") 

data5<-paste("ZScoreColorHeatmap_", dat.name, ".pdf",collapse=NULL) 

gsub(" ", "", data5)->data5 

image(x, col=MyCol, breaks=HeatBrk, axes = FALSE) 

axis(2,las=2, at=Ticks, labels = Side, tick = TRUE) 

axis(1,las=2, at=Ticks, labels = Bot, tick = TRUE) 

legend(x=1.0,y=0.8,legend=HeatBrk[-1],fill=MyCol,bty="n",cex=0.5) 

dev.copy(device=pdf, file=data5, height=8, width=8) 

dev.off()} 

dev.off() 

 

} 

 

sumZ <- 

function(samDir,refDir,omit){ 

setwd(refDir) 

list.files(pattern="ZScoreRefMatrix")->zscoreList_ref 

length(zscoreList_ref)->nref 

setwd(samDir) 
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list.files(pattern="ZScoreMatrix")->zscoreList_sam 

length(zscoreList_sam)->nsam 

a<-matrix(nrow=(nsam+nref),ncol=3) 

setwd(refDir) 

for(b in 1:nref){ 

read.table(zscoreList_ref[b])->x 

file.name<-zscoreList_ref[b] 

sub(".txt", "", file.name)->file.name 

sub("ZScoreMatrix_notAbs_", "", file.name)->file.name 

gsub(" ", "", file.name)->file.name 

colSums(x,na.rm=TRUE)->y 

sum(y)->z 

a[b,1]<-"Reference" 

a[b,2]<-file.name 

a[b,3]<-z 

} 

setwd(samDir) 

 

for (b in 1:nsam){ 

read.table(zscoreList_sam[b])->x 

file.name<-zscoreList_sam[b] 

sub(".txt", "", file.name)->file.name 

sub("ZScoreMatrix_notAbs_", "", file.name)->file.name 

gsub(" ", "", file.name)->file.name 

as.matrix(x)->x 

x[is.infinite(x)]<-NA 

colSums(x,na.rm=TRUE)->y 

sum(y)->z 

a[b+nref,1]<-"Sample" 

a[b+nref,2]<-file.name 

a[b+nref,3]<-z 

} 

write.table(a,file="Matrix Total Z 

Sum.txt",sep="\t",col.names=FALSE,row.names=FALSE) 

 

(mean(as.numeric(a[1:nref,3]))+4*(sd(a[1:nref,3])))->cutoff 

(mean(as.numeric(a[1:nref,3]))+2*(sd(a[1:nref,3])))->cutoff2 

(mean(as.numeric(a[1:nref,3]))+1*(sd(a[1:nref,3])))->cutoff3 

a[(1+nref):(nref+nsam),1:3]->d 

 

if (is.logical(nrow(d)==NULL)){ 

write.table(d,file="Prioritized Total Z Sum.txt",sep="\t",col.names=FALSE) 

} 
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else{ 

d[(as.numeric(d[,3])>cutoff),]->d 

d[order(as.numeric(d[,3]),decreasing=TRUE),]->d 

SDrow<-cbind("Reference","Mean+4SD",cutoff) 

rbind(d,SDrow)->d 

write.table(d,file="Prioritized Total Z Sum.txt",sep="\t",col.names=FALSE) 

} 

 

 

if(is.logical(omit)){ 

if(omit){ 

stop("omit must be FALSE or a string of values") 

} 

else{ 

xval<-c(1:nrow(a)) 

length(xval)->nn 

(nn*0.1)+nn->nn 

min(xval)->n 

(n-(nn*0.1))->n 

par(cex.axis=1, mar=c(5,4,4,5)) 

plot(x=xval,y=a[,3],pch=20,main="Total Z Sum Value vs Sample",ylab="Summed Z 

Value",cex=0.7,xlab="", xlim=c(n,nn)) 

} 

} 

 

else{ 

a<-a[-omit,] 

xval<-c(1:nrow(a)) 

length(xval)->nn 

(nn*0.1)+nn->nn 

min(xval)->n 

(n-(nn*0.1))->n 

par(cex.axis=1, mar=c(5,4,4,5)) 

plot(x=xval,y=a[,3],pch=20,main="Total Z Sum Value vs Sample",ylab="Summed Z 

Value",cex=0.7,xlab="", xlim=c(n,nn)) 

} 

abline(h=cutoff2) 

abline(h=cutoff) 

abline(h=cutoff3) 

abline(v=nref) 

axis(side=4,labels=c(expression(1*sigma),expression(2*sigma),expression(4*sigma)),at=

c(cutoff3,cutoff2,cutoff),cex.axis=0.5,las=2) 

mtext("Reference Number",side=1,at=(0.5*nref),col="blue",line=3) 
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mtext("Sample Number",side=1,at=(nref+0.5*nsam),col="red",line=3) 

text(x=xval, y=as.numeric(a[,3])*1.015,a[,2],cex=0.5) 

dev.copy(device=pdf,file="Total Summed Z Plot.pdf",height=8,width=8) 

dev.off() 

dev.off() 

} 

 

sampleZ <- 

function(Dir,fileS,writesam,refDir,negval,input) { 

setwd(refDir) 

require(miscTools) 

M<-read.table("Avg_Matrix.txt",sep="\t") 

avg_matrix<-M[-1,-1] 

N<-read.table("SD_Matrix.txt",sep="\t") 

sd_matrix<-N[-1,-1] 

setwd(Dir) 

read.table(fileS,sep="\t") -> dat 

DirS<-paste(Dir,"Samples",sep="/",collapse=NULL) 

dir.create(DirS) 

if(negval){ DirN<-paste(DirS,"Not_AbsVal",sep="/",collapse=NULL) 

dir.create(DirN) 

} 

 

if (input=="mnova") { 

read.table(fileS,sep="\t") -> dat 

(dat[1,seq(3,ncol(dat),4)]+dat[1,seq(4,ncol(dat),4)])*0.5->e 

rev(e)->f 

dat[,seq(6,ncol(dat),4)]->z 

 

 

} 

else {if (input=="acd") { 

read.table(fileS,sep="\t") -> z 

z[1,c(-1,-2)]->nameS 

z[-1,-1]->z 

 

zz <- gsub("\\[|\\.\\.|\\]", "", as.character(z[,1])) 

sapply(strsplit(zz, "  "), function(x)mean(as.numeric(x)))->z[,1] 

z[order(z[,1],decreasing=TRUE),]->z 

rm(zz) 

t(z[,1])->e 

rev(z[,1])->f 

t(z)->z 
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z[-1,]->z 

} 

 

else (stop ("invalid input type")) 

} 

setwd(DirS) 

n<-ncol(z) 

nrow(z)->m 

Col1<-matrix(f) 

Col1<-insertRow(Col1,1,"") 

Col1<-t(Col1) 

Row1<-matrix(e) 

data2<-NULL 

data1<-NULL 

write.table(z,"SampleFilesprocessed.txt",sep = "\t", quote = F) 

 

if(writesam){LstRatios<-list() 

 

for (d in 1:m) { 

for (a in n:1) { 

for (b in 1:n) { 

cbind(data2, ((z[d,a])/(z[d,b])))->data2 

 

} 

rbind(data1,data2)->data1 

data2<-NULL 

} 

 

data4<-paste("SampleMatrix_",d, ".txt",collapse=NULL) 

 

write.table(data1, file=data4, sep="\t", row.names=F, col.names=F, quote=FALSE, 

append=FALSE)  

LstRatios[[d]]<-data1 

data1<-NULL 

} 

}  else {LstRatios<-list() 

for (d in 1:m) { 

for (a in n:1) { 

for (b in 1:n) { 

cbind(data2, ((z[d,a])/(z[d,b])))->data2 

 

} 

rbind(data1,data2)->data1 
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data2<-NULL 

} 

 

LstRatios[[d]]<-data1 

data1<-NULL 

} 

} 

 

data_files<-LstRatios 

 

for (b in 1:m){ 

for (i in 1:n){ 

 

for (a in 1:n){ 

 

data_files[[b]][(i),(a)]<-(data_files[[b]][(i),(a)])-(avg_matrix[(i),(a)]) 

} 

} 

} 

data_files_write<-list() 

for (b in 1:m){ 

for (i in 1:n){  

 

for (a in 1:n){ 

 

data_files[[b]][(i),a]<-(data_files[[b]][(i),a])/(sd_matrix[(i),a]) 

} 

  

} 

if(input=="acd"){as.matrix(nameS[b])->dat.name} 

if(input=="mnova"){dat.name<-b} 

if(negval){ setwd(DirN) 

data_files_write[[b]]<-data_files[[b]] 

data_files_write[[b]]<-insertRow(data_files_write[[b]],1,Row1) 

data_files_write[[b]]<-insertCol(data_files_write[[b]],1,Col1) 

data4<-paste("ZScoreMatrix_notAbs_", dat.name, ".txt",collapse=NULL) 

write.table(data_files_write[[b]], file=data4, sep="\t", row.names=F, col.names=F, 

quote=FALSE, append=FALSE) 

setwd(DirS) 

} 

data_files[[b]]<-abs(data_files[[b]]) 

data_files_write[[b]]<-data_files[[b]] 

data_files_write[[b]]<-insertRow(data_files_write[[b]],1,Row1) 
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data_files_write[[b]]<-insertCol(data_files_write[[b]],1,Col1) 

data4<-paste("ZScoreMatrix_",b, ".txt",collapse=NULL) 

write.table(data_files_write[[b]], file=data4, sep="\t", row.names=F, col.names=F, 

quote=FALSE, append=FALSE) 

} 

} 

 

refZ <- 

function(Dir,fileR,writeref,negval,input){ 

 

setwd(Dir) 

require(miscTools) 

if (input=="mnova") { 

read.table(fileR,sep="\t") -> dat 

(dat[1,seq(3,ncol(dat),4)]+dat[1,seq(4,ncol(dat),4)])*0.5->e 

rev(e)->f 

dat[,seq(6,ncol(dat),4)]->z 

 

 

} 

else {if (input=="acd") { 

read.table(fileR,sep="\t") -> z 

z[1,c(-1,-2)]->nameR 

z[-1,-1]->z 

 

zz <- gsub("\\[|\\.\\.|\\]", "", as.character(z[,1])) 

sapply(strsplit(zz, "  "), function(x)mean(as.numeric(x)))->z[,1] 

z[order(z[,1],decreasing=TRUE),]->z 

rm(zz) 

t(z[,1])->e 

rev(z[,1])->f 

t(z)->z 

z[-1,]->z 

} 

 

else (stop ("invalid input type")) 

} 

n<-ncol(z) 

Col1<-matrix(f) 

Col1<-insertRow(Col1,1,"") 

Col1<-t(Col1) 

Row1<-matrix(e) 

data2<-NULL 
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data1<-NULL 

write.table(z,"ReferenceFilesprocessed.txt",sep = "\t", quote = F) 

DirR<-paste(Dir,"ReferenceMatrix",sep="/",collapse=NULL) 

dir.create(DirR) 

if(negval){ DirA<-paste(DirR,"Not_AbsVal",sep="/",collapse=NULL) 

dir.create(DirA) 

} 

setwd(DirR) 

ncol(z) -> n 

nrow(z) -> m 

 

if(writeref) {LstRatios<-list() 

for (d in 1:m) { 

for (a in n:1) { 

for (b in 1:n) { 

cbind(data2, ((z[d,a])/(z[d,b])))->data2 

 

} 

rbind(data1,data2)->data1 

data2<-NULL 

} 

 

data4<-paste("ReferenceMatrix_", d, ".txt",collapse=NULL) 

write.table(data1, file=data4, sep="\t", row.names=F, col.names=F, quote=FALSE, 

append=FALSE)  

LstRatios[[d]]<-data1 

data1<-NULL 

} 

}else {LstRatios<-list() 

for (d in 1:m) { 

for (a in n:1) { 

for (b in 1:n) { 

cbind(data2, ((z[d,a])/(z[d,b])))->data2 

 

} 

rbind(data1,data2)->data1 

data2<-NULL 

} 

 

LstRatios[[d]]<-data1 

data1<-NULL 

} 

} 
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data_list<-LstRatios 

data_files<-LstRatios 

 

y<-Reduce("+",data_list) 

g<-y/m 

avg_matrix <- g 

 

h<-as.matrix(g) 

h<-insertRow(h,1,Row1) 

h<-insertCol(h,1,Col1) 

 

write.table(h, "Avg_Matrix.txt", sep="\t") 

 

data_list2 <- NULL 

for (i in 1:m){ 

data_list2[[i]] <- data_list[[i]]-g} 

for (i in 1:m){ 

data_list2[[i]] <- data_list2[[i]]^2} 

 

y <- Reduce("+", data_list2) 

y <- y/(m-1) 

y <- sqrt(y) 

sd_matrix <- y 

 

h<-as.matrix(y) 

h<-insertRow(h,1,Row1) 

h<-insertCol(h,1,Col1) 

 

write.table(h, "SD_Matrix.txt", sep="\t") 

 

for (b in 1:m){ 

for (i in 1:n){ 

 

for (a in 1:n){ 

 

data_files[[b]][(i),(a)]<-(data_files[[b]][(i),(a)])-(avg_matrix[(i),(a)]) 

} 

} 

} 

data_files_write<-list() 

for (b in 1:m){ 

for (i in 1:n){  
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for (a in 1:n){ 

 

data_files[[b]][(i),a]<-(data_files[[b]][(i),a])/(sd_matrix[(i),a]) 

} 

  

} 

if(input=="acd"){ 

as.matrix(nameR[b])->dat.name 

} 

if(input=="mnova"){b->dat.name} 

if(negval){ setwd(DirA) 

data_files_write[[b]]<-data_files[[b]] 

data_files_write[[b]]<-insertRow(data_files_write[[b]],1,Row1) 

data_files_write[[b]]<-insertCol(data_files_write[[b]],1,Col1) 

data4<-paste("ZScoreRefMatrix_notAbs_",dat.name, ".txt",collapse=NULL) 

write.table(data_files_write[[b]], file=data4, sep="\t", row.names=F, col.names=F, 

quote=FALSE, append=FALSE) 

setwd(DirR) 

} 

data_files[[b]]<-abs(data_files[[b]]) 

data_files_write[[b]]<-data_files[[b]] 

data_files_write[[b]]<-insertRow(data_files_write[[b]],1,Row1) 

data_files_write[[b]]<-insertCol(data_files_write[[b]],1,Col1) 

data4<-paste("ZScoreRefMatrix_",dat.name, ".txt",collapse=NULL) 

write.table(data_files_write[[b]], file=data4, sep="\t", row.names=F, col.names=F, 

quote=FALSE, append=FALSE) 

} 

 

} 

 

pspec <- 

function(Dir,refDir,rfileR,rfileS,negval,mag,xax,type){ 

require(miscTools) 

setwd(refDir) 

as.matrix(read.table(rfileR,sep="\t",header=TRUE))->ref    

 

 

ref[,-1]->ref 

((rowSums(ref,na.rm=TRUE))/(ncol(ref)))->avgy 

length(avgy)->n 

colnames(ref)->refNames 

refNames[-1]->refNames 

ref[,1]->avgx 
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length(avgx)->n 

 

setwd(Dir) 

as.matrix(read.table(rfileS,sep="\t",header=TRUE))->rsam 

 

rsam[,-1]->spy 

colnames(spy)->samNames 

 

ncol(spy)->m 

Sxargs<-spy[,1] 

length(Sxargs)->n 

DirS<-paste(Dir,"Samples",sep="/",collapse=NULL) 

if(negval){DirS<-paste(DirS,"Not_AbsVal",sep="/",collapse=NULL)} 

setwd(DirS) 

 

 

for (b in 2:m){ 

par(mfrow=c(3,1)) 

yargs<-spy[,b] 

max(yargs)->maxval 

maxval/mag->ycut 

plot(x=Sxargs,y=yargs,type="l",main=paste("Raw NMR 

Spectrum",samNames[b],collapse=NULL,sep=" 

"),xlab="ppm",ylab="Intensity",lwd=0.2,ylim=c(0,ycut),xlim=xax,xaxt="n") 

axis(side=1, at=seq(0.5,9,0.5), labels=seq(0.5,9,0.5), tick=TRUE) 

 

if(type=="ref"){ 

if(negval){data4<-paste("ZScoreRefMatrix_notAbs_",samNames[b], 

".txt",collapse=NULL) 

gsub(" ", "", data4)->data4 

} 

else{data4<-paste("ZScoreRefMatrix_",samNames[b], ".txt",collapse=NULL) 

gsub(" ", "", data4)->data4 

} 

} 

if(type=="sam"){ 

if(negval){data4<-paste("ZScoreMatrix_notAbs_",samNames[b], ".txt",collapse=NULL) 

gsub(" ", "", data4)->data4 

} 

else{data4<-paste("ZScoreMatrix_",samNames[b], ".txt",collapse=NULL) 

gsub(" ", "", data4)->data4 

} 

} 
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as.matrix(read.table(data4,sep="\t"))->x 

xargs<-t(x[-1,1]) 

x[-1,-1]->x 

x[is.infinite(x)]<-NA 

yargs<-rowSums(x,na.rm=TRUE) 

plot(x=xargs,y=yargs,type="l",main=paste("Z-score 

Projection",samNames[b],collapse=NULL,sep=" "),xlab="ppm",ylab="Z 

Sum",xaxt="n",xlim=xax) 

axis(side=1, at=seq(0.5,9,0.5), labels=seq(0.5,9,0.5), tick=TRUE) 

plot(x=avgx,y=avgy,type="l",main="Library Averaged Reference 

Spectrum",xlab="ppm",ylab="Intensity",lwd=0.2,ylim=c(0,ycut),xaxt="n",xlim=xax) 

axis(side=1, at=seq(0.5,9,0.5), labels=seq(0.5,9,0.5), tick=TRUE) 

data6<-paste("ZSpectra_",samNames[b],".pdf",collapse=NULL) 

dev.copy(device=pdf,file=data6,height=8,width=8) 

dev.off() 

} 

} 

 

 

heatZ <- 

function(DirH,lo,hi,m,ppm,clr,type){ 

setwd(DirH) 

if(type=="ref"){list.files(pattern="ZScoreRefMatrix")->name.list} 

if(type=="sam"){list.files(pattern="ZScoreMatrix")->name.list} 

par(cex.axis=0.6, mar=c(5,4,4,5), xpd=TRUE) 

length(name.list)->m 

for (b in 1:m){ 

data4<-name.list[b] 

as.matrix(read.table(data4,sep="\t"))->x 

Bot<-as.character(x[-1,1]) 

Side<-as.character(x[1,-1]) 

length(Side)->nS 

Ticks<-seq(0,1,1/(nS-1)) 

j<-ceiling((2*0.06/ppm)) 

Ticks<-Ticks[seq(j,length(Ticks),j)] 

Bot<-Bot[seq(j,length(Bot),j)] 

Side<-Side[seq(j,length(Side),j)] 

 

x[-1,-1]->x 

hi->x[x>=hi] 

HeatBrk<-seq(lo,hi,((hi-lo)/5)) 

if(clr){ 

MyCol=c("#FFFFFF","#66FFFF","#3366FF","#663399","#990000") 
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} 

else{ 

MyCol<-gray((4:0)/4) 

 

} 

 

data5<-paste("Heatmap_",data4, ".pdf",collapse=NULL) 

 

 

image(x, col=MyCol, breaks=HeatBrk, axes = FALSE) 

axis(2,las=2, at=Ticks, labels = Side, tick = TRUE) 

axis(1,las=2, at=Ticks, labels = Bot, tick = TRUE) 

legend(x=1.0,y=0.8,legend=HeatBrk[-1],fill=MyCol,bty="n",cex=0.5) 

dev.copy(device=pdf, file=data5, height=8, width=8) 

dev.off()} 

} 

 

 




