Szilard Engines as Quantum Thermodynamical Systems
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Szilard Engines as Quantum Thermodynamical Systems

Abstract

We analyze an engine whose working fluid consists of a single quantum particle, paralleling Szilard's construction of a classical single-particle engine. Following his resolution of Maxwell's Second Law paradox using the latter, which turned on physically instantiating the demon (control subsystem), the quantum engine's design mirrors the classically-chaotic Szilard Map that operates a thermodynamic cycle of measurement, thermal-energy extraction, and memory reset. Focusing on the thermodynamic costs to observe and control the particle and comparing these in the quantum and classical limits, we detail the thermodynamic tradeoffs behind Landauer's Principle for information-processing-induced thermodynamic dissipation in the quantum and classical regimes. In particular, and as found with the classical engine, we show that the sum of the thermodynamic costs over a cycle obeys a generalized Landauer Principle, exactly balancing energy extraction from the heat bath. Thus, the quantum engine obeys the Second Law. However, the quantum engine does so via substantially different mechanisms: classically measurement and erasure determine the thermodynamics, while in the quantum implementation the cost of partition insertion is key.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View