Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Vitamin E depletion is associated with subclinical axonal degeneration in juvenile horses

Published Web Location

https://doi.org/10.1111/evj.13907
Abstract

Background

Phosphorylated neurofilament heavy, a marker of neuroaxonal damage, is increased in horses with equine neuroaxonal dystrophy. However, the temporal dynamics of this biomarker during the post-natal risk period are not understood.

Objective

To measure serum and cerebrospinal fluid phosphorylated neurofilament heavy concentrations in juvenile foals across the post-natal window of susceptibility for equine neuroaxonal dystrophy.

Study design

Case-control in vivo experimental study.

Methods

Concentrations of phosphorylated neurofilament heavy were measured using frozen serum and cerebrospinal fluid collected from 13 foals raised in a vitamin E deficient environment from 1 to 6 months of age. Four of these foals were produced by equine neuroaxonal dystrophy-affected dams, developed clinical signs consistent with equine neuroaxonal dystrophy and had a diagnosis confirmed by histopathology. The remaining nine foals, produced by healthy mares, were vitamin E depleted and remained clinically healthy. An additional cohort of foals, produced by healthy mares, were supplemented with vitamin E (α-tocopherol; α-TOH) from birth and sampled similarly.

Results

Serum α-TOH concentrations were significantly higher in vitamin E supplemented healthy foals. Serum phosphorylated neurofilament heavy concentrations did not differ significantly between groups at any time point. Cerebrospinal fluid phosphorylated neurofilament heavy concentrations increased with age in healthy vitamin E depleted foals (p < 0.001); an effect that was not observed in healthy vitamin E supplemented foals.

Main limitations

A genetically susceptible cohort supplemented with vitamin E was not available for comparison.

Conclusion

We demonstrate that vitamin E depletion may elevate cerebrospinal fluid phosphorylated neurofilament heavy in otherwise healthy juvenile foals by 6 months of age. We highlight an important cofactor to consider when interpreting cerebrospinal fluid phosphorylated neurofilament heavy concentrations in juvenile horses.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View