- Main
Impact of Peroxymonocarbonate on the Transformation of Organic Contaminants during Hydrogen Peroxide in Situ Chemical Oxidation
Published Web Location
https://doi.org/10.1021/acs.estlett.9b00682Abstract
Under the conditions employed when in situ chemical oxidation is used for contaminant remediation, high concentrations of H2O2 (e.g., up to ~10 M) are typically present. Using 13C NMR, we show that in carbonate-rich systems, these high concentrations of H2O2 result in a reaction with HCO3 - to produce peroxymonocarbonate (HCO4 -). After formation, HCO4 - reacts with phenol to produce di- and tri-hydroxyl phenols. HCO4 - reacts with substituted phenols in a manner consistent with its electrophilic character. Exchanging an electron-donating substituent in the para position of a phenolic compound with an electron-withdrawing group decreased the reaction rate. Results of this study indicate that HCO4 - is a potentially important but previously unrecognized oxidative species generated during H2O2 in situ Chemical Oxidation (ISCO) that selectively reacts with electron-rich organic compounds. Under conditions in which HO· formation is inefficient (e.g., relatively high concentration of HCO3 -, low total Fe and Mn concentrations), the fraction of the phenolic compounds that are transformed by HCO4 - could be similar to or greater than the fraction transformed by HO·. It may be possible to adjust treatment conditions to enhance the formation of HCO4 - as a means of accelerating rates of contaminant removal.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-