
UCLA
Technical Reports

Title
Experiences with the Extensible Sensing System ESS

Permalink
https://escholarship.org/uc/item/60k9t66z

Authors
Richard Guy
Ben Greenstein
John Hicks
et al.

Publication Date
2006

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/60k9t66z
https://escholarship.org/uc/item/60k9t66z#author
https://escholarship.org
http://www.cdlib.org/

Experiences with the Extensible Sensing System ESS
Richard Guy, Ben Greenstein, John Hicks, Rahul Kapur, Nithya Ramanathan,

Tom Schoellhammer, Thanos Stathopoulos, Karen Weeks,
Kevin Chang, Lew Girod, Deborah Estrin

UCLA Center for Embedded Network Sensing
3563 Boelter Hall, UCLA

Westwood, CA 90095-1596
01-310-825-3127

rguy@cens.ucla.edu
ABSTRACT
The Extensible Sensing System (ESS) has been in use for several
years in a variety of sensor network deployments. It is a key
component of a collection of tools that together are a nearly
complete, end-to-end, sensor-to-user facility for deploying and
managing a sensor network. This paper provides the context and
architectural overview of ESS, along with selected deployment
details and a series of lessons learned. Lesson areas include
connectivity, interactivity, energy vs. robustness, vertical integra-
tion, and real-time visibility. The current version of ESS reflects
changes from these lessons; further, new tools are in development
that complement ESS.

Keywords
Sensor networks; field deployment experiences; ESS; CENS.

1. INTRODUCTION
Environmental sensing applications commonly share a sampling
model in which most nodes in the network are homogenous, in the
sense that many nodes will share identical sensors that will all be
tasked to sample with the same frequency and at the same time.
The data from each sensor will be returned to a ‘sink’ node, where
it is collected and then transferred to an external data repository
for archival and analysis.

The Environmental Sensing System (ESS) is a key component of
a system that a domain scientist (e.g., botanist, ecologist) would
employ for a long-duration study of the environment at a fine-
grained spatial and temporal density: a complete environmental
data collection, archival, and analysis system. Figure 1 shows a
detailed view of such an overall system.

Domain scientist
Data display/analysis tools

DAS, Excel,
MATLAB, gnuplot

Data management tools

Database host
SensorBase.org

Internet
High-power wireless link
Microserver basestation

Low-power wireless network

Low-power platform

Sensor interface

Sensor

ESS

Figure 1: Overall sensing system levels and the corresponding
software application that manages each level.

ESS is a software application that spans the lower tiers of this
overall system architecture, from sensor to microserver base-
station. It provides high-level interfaces for controlling data
sampling, transformation, and collection from the sensor network;
it also includes lower-level tools such as energy-efficient routing
algorithms and sensor interface drivers. A primary goal of ESS is
that it be suitable for multi-year deployments.

ESS leverages two primary software development and deploy-
ment environments: TinyOS at the low-power platform level and
Emstar at the microserver base-station level. TinyOS [1] is an
operating environment designed for resource-constrained plat-
forms such as the Crossbow Mica mote family of low-power
wireless sensor network processor boards. TinyOS includes a
variety of useful tools, including a radio stack for the Mica2’s
CC1000 20Kbps radio. This stack contains a basic radio driver
(ie, physical and link layer protocols) and a tunable energy-
efficient medium access control layer (BMAC with low-power
listen).

Emstar [2] is a sensor network development environment that
primarily supports higher-power platforms that run the Linux
operating system. One key Emstar tool is EmTOS, a real-time
TinyOS simulator. EmTOS enables the TinyOS application code
that normally executes on a mote platform to be simulated on a
higher-powered Linux platform, and further allows for easy inter-
facing to other Emstar services. Emstar also provides easy-to-use
hooks into EmTOS to allow for export of TinyOS application
control and status interfaces.

In a simple sensor network with a collection of motes and a single
micro-server (the common ESS deployment model to date),
Emstar’s main contributions are EmTOS and interface services to
applications external to Emstar. However, in more complex
environments, with multiple microservers (either redundantly in
one network or as gateways for several networks), Emstar is
leveraged much more extensively.

While control of the sensor network, and retrieval of data from the
sensors for collection at the microserver base-station, is an essen-
tial foundation for a sensor network system, a domain scientist
needs much more: she needs the data moved from a remote field-
deployed microserver to a database environment that enjoys well-
connected access, high-quality power, significant computation
resources, backup services, and so on—services routinely avail-
able at most institutional computation centers. To this end, ESS is
augmented by SensorBase.org, a recent experiment in providing a
centralized repository that allows people to easily publish and
share a specific domain of environmental sensor network data.
SensorBase.org [3] is a web site and a database designed for ESS-
specific environmental sensor network data. It provides users a

uniform and consistent method for publishing sensor network
data. It allows users to define data types, groups, and permission
levels. It is also a sensor network search engine, which allows
users to query for specific data sets based on geographic location,
sensor type, date/time range, and other relevant fields. Figure 2
shows the entire schema of just 15 tables.

Figure 2: The SensorBase.org relational database schema.
SensorBase.org will be used by domain scientists, in particular,
along with conventional data analysis tools such as MATLAB,
Excel and gnuplot.
Our Deployment Analysis System (DAS) [4] is a web-based tool
that interfaces to SensorBase.org and provides useful and concise
displays of various aspects of a sensor network deployment.
Summary charts and graphs provide easy access to current and
historical data, including both domain data and system health
data. The latter is extensively used to monitor and diagnose
problems. Figure 3 shows a sample DAS display.

Figure 3: Sample DAS display.
In the sequel, we present an overview of the ESS architecture and
key components in Section 2, followed in Section 3 by a brief
summary of some typical ESS deployments. Section 4 lays out
the most important lessons learned from our deployment
experiences.

2. ESS ARCHITECTURE
ESS is composed of a small number of well-modularized compo-
nents. These include: standard TinyOS scheduler and CC1000
radio stack (including BMAC/LPL low-power listen); standard
Crossbow MDA300 sensor board driver; several experimental
message routing services; time management service; persistent
data buffer; Sympathy system status service; and the DSE Data
Sampling Engine.

2.1 DSE
The DSE Data Sampling Engine provides the control and data
export interfaces, and thus drives the rest of the application. The
DSE sampling model uniquely labels each sensor type and sensor
board channel combination. (The vast majority of existing sen-
sors on the market are not self-identifying, so the burden is on the
senor deployer to correctly attach the sensor wiring to the desired
sensor board channel. DSE is pre-configured with a large number
of existing sensors and possible channel mappings.)

DSE supports several classes of queries, including one-time
queries (to be executed upon receipt by each node with the
appropriate sensors) and periodic queries (executed on receipt,
plus infinitely often at the specified interval). A query may be
aggregate over several sensor types for concurrent sampling, or
specify a single sensor type. DSE attaches a locally-generally
timestamp for each data sample. A typical example ESS query
specifies a 300 second periodic query interval, sampling a
temperature thermistor on channel 0 (a 2.5V excitation reference)
and concurrently sampling a relative humidity sensor on channel 1
(a 3.3V excitation reference) and also the (battery) supply voltage
to the node. DSE is pre-programmed with the excitation duration
and any delay to follow prior to the actual sample.
The control interface also includes features to delete a previously
established query, add new sensor configuration parameters, and
inspect current query and sensor configuration parameters.
DSE assumes an unreliable broadcast flooding model for query
dissemination, and neglible network forwarding delay. Periodic
queries are flooded from the microserver at intervals usually much
larger than the query’s period; nodes that fail to receive the initial
query (or have lost the query due to a node reboot after a battery
swap, for example) are likely to receive it at some future point.

One important exception to this query dissemination model arises
in cases where no microserver is within range (directly or
indirectly) of a sensor node. For example, subterranean
deployment of wireless sensor nodes in a set of caves presents
very difficult RF connectivity issues. ESS can be used in this
setting by pre-configuring each sensor node with a default query
which takes effect immediately at boot time. Another method is
to carry a portable microserver for use in initiating queries at
deployment, and then ‘disconnecting’ simply by leaving the area.
So-called “lonely motes” have been deployed in the former
fashion, using default queries to collect data for several weeks;
they were then physically retrieved and placed near a microserver
for data upload.

2.2 Routing
ESS has several compile-time-selectable routing services,
including a basic beacon-based multihop service (multihop), a
centralized routing service (centroute), and an advanced
distributed routing service (hyper). ESS assumes that the

dominant communication pattern in a sensor network is node-to-
sink (carrying data in response to queries), and therefore
optimizing routing for that pattern is paramount. All of the ESS
routing services create a routing tree used primarily for moving
data from sensor nodes to sink node. No point-to-point
mechanism exists for sink-to-node communication, under the
assumption that the dominant communication paradigm for
messages originating at the sink is one-to-all. Although messages
from node to sink are point-to-point in that a rooted acyclic path is
followed, no other notion of arbitrary node-to-node
communication is provided.

The beacon-based multihop routing service uses periodic beacons
to assess link quality between nodes and passes that data to the
designated sink node, where a routing tree is constructed and
disseminated via flooding to the sensor network. Newly booted
nodes send out beacons at an accelerated rate, to spur any
neighbors to push their (by definition, new) link quality data to the
sink node, where a new energy-efficient routing tree will be
constructed and disseminated. This service has been in use for
nearly two years on a number of deployments, ranging from 2 to
27 nodes each; as with many first-effort routing algorithm
implementations, it works well with stable links and less so with
very weak critical links.

More recent routing algorithm implementations include centroute
and hyper.

Centroute is a centralized tree-based routing protocol, in that all
control decisions are made in a single point, the microserver
(which is also the root of the tree). The protocol uses source
routing in addition to a centralized decision point in order to avoid
loops. In addition, only constant state is kept on the motes
themselves (information about their parent) so the protocol scales
well with increasing network density (in contrast, protocols that
maintain neighbor lists on each mote have scalability issues when
density increases). Centroute is able to maintain higher than 99%
connectivity in medium or high-density networks while incurring
a low overhead.

The Hyper routing protocol creates routing trees in response to a
‘tree formation’ message flooded from the sink (root) node. Every
node waits a short period to collect path cost estimates from
neighbors, selects the lowest cost path as the preferred path to the
root, and in turn floods out that estimate. Experimental results
suggest that a stable, high-quality tree can be formed in under a
second. In addition to building quality routes quickly, Hyper also
includes several features to support fast convergence. When a
node boots it can quickly assess its neighborhood, graft onto an
existing tree, and get time synchronization information from
neighbors. These features make deployment and maintenance
easy, reducing the amount of time spent per node.

2.3 Time Management
Ideally, data samples are timestamped at the instant the sample is
taken, with the time provided by a very high-quality time
reference. In practice, timestamps suffer from both delay in
receiving a reference value and internal clock drift. Sensor
network platforms can suffer from an additional malady: the
absence of battery-backed clocks in the presence of power
interruptions (e.g., primary battery failure) or manual reset. ESS
periodically floods a time reference value from sink to nodes, both
to limit clock drift on the mote hardware and to ensure that power-

cycled nodes receive a valid time value relatively soon. Because
most data sample intervals are on the order of tens or hundreds of
seconds, accumulated time error resulting from varying hop
latencies and drift (on the order of milliseconds, or even tenths of
seconds) are insignificant.

2.4 Persistent storage
Experience with early versions of ESS in real deployments
quickly showed that connectivity in the wild is much worse than
in-lab experiences had suggested. In particular, nodes frequently
could not maintain sufficient link quality with neighbors to
reliably transport data packets across a multi-hop network to the
sink. This was exacerbated by limited availability of mote RAM
for buffering in-transit data packets. The ESS solution is to use
the on-board EEPROM as a persistent data store for packets that
aren’t immediately acknowledged by an upstream neighbor. This
store can hold about 40,000 individual data samples, which is
sufficient for nearly two node-weeks of 120 samples/hour.

2.5 Sympathy
Sympathy is a prototype tool for detecting and debugging failures
in pre- and post-deployment sensor networks. Sympathy has
selected metrics that enable efficient failure detection; nodes
periodically transmit a subset of these metrics back to a sink,
which combines this information with passively-gathered metrics
to detect failures and determine their causes. Sympathy also
includes a fault-tree algorithm that root-causes failures and
localizes their sources in order to reduce overall failure
notifications and point the user to a small number of probable
causes.

Sympathy gathers and analyzes general system metrics such as
nodes' next hops and neighbors. Based on these metrics, it detects
which nodes or components have not delivered sufficient data to
the sink and infers the causes of these failures.

3. DEPLOYMENTS
ESS has been deployed in a range of settings, from forest to farm
and botanical garden to Bangladesh. Our longest and largest
deployments have been at the University of California’s James
Reserve [5] in the San Jacinto National Forest near Palm Springs
(1.5 years, 20-27 nodes); smaller or younger deployments are
present in a farm in the high desert of Palmdale, California (1.5
years, 2 nodes) and at the UCLA Botanical Garden [6] (3 mos, 24
nodes); our most recent and novel deployment was for two weeks
in a rice paddy near Dhaka, Bangladesh.

A typical ESS microserver consists of an Intel Stargate, equipped
with either a GPRS Sony Ericsson Edge modem card or a 200mW
SMC 802.11b card; a solar panel, charge controller and 100Ahr
battery; and a ‘transceiver’ gateway Mica2 mote to bridge to the
sensor network array of motes.

A typical ESS node comprises a Crossbow [7] Mica2 mote with
433MHz CC1000 radio; Crossbow MDA300 sensor interface
board; and 2-8 sensors. One James Reserve transect of 27 nodes
uses simple temperature and relative humidity sensors jointly
housed in a solar shielded enclosure at each node; another 10-
node transect includes additional sensors for wind, wind gust,
rainfall, and soil moisture on many nodes. The Bangladesh
experiment involved 12 motes with up to four nitrate, calcium, or
phosphate sensors each. The motes are commonly equipped with

a single LiSO2 D-cell at 3.6V or 3.0V; occasionally a pair of 1.5V
alkaline cells (AA, C, or D) is used instead. Figure 4 shows a
typical micro-climate monitoring node.

Figure 4: A typical ESS micro-climate monitoring node.

4. LESSONS LEARNED
ESS is now in its third year and second major version. Imperfect
assumptions about how sensor networks would be used, and
technology change, have promoted improvements.

4.1 Connectivity
Assumption: A sensor network is dense, implying easy ongoing
RF connectivity.

Reality: Sensor installation is labor-intensive, encouraging
carefully chosen sites; science-driven placement rarely yields
quality RF paths; installation is usually done in daylight and good
weather and minimal foliage, when RF conditions are best.
However, nightfall, precipitation and plant growth happens!

Impact: Software at all levels (mote, microserver, DB host) must
assume disconnection is normal—for all control, monitoring, and
data collection activities; this includes disconnection between
microserver and outside world. The three most important
impacted issues are tasking, time dissemination, and data
buffering. (Neither Mica2 mote nor Stargate have battery-backed
clocks; power cycling in isolation yields ‘timeless’ data, which is
often forever useless!)

Another effect is seen in our growing use of “relay motes” which
do not service sensors, but simply act to plug network
connectivity gaps. These motes are often placed at a higher
elevation plane, where fewer obstructions might be found. These
additional motes may stress network routing algorithms that have
a dependency on neighbor density and overall scale.

4.2 Interactivity
Assumption: Hardware and software would work in the wild,
much as in the lab; so, one could physically deploy a complete
network rapidly in a convenient order and later look at the data
stream (at microserver or even DB host) to identify problems.

Reality: Hardware breaks or is carelessly manufactured or
installed; it is very hard to identify the nature of failure at a
distance (either physical or time).

Impact: Sensor network deployment is by necessity an
incremental, interactive, time-consuming activity. The software
architecture must support interactive control and monitoring of an

individual node while the node is being assembled and installed in
the field. This further implies the need for a portable pseudo-
microserver to interact temporarily with a node during
installation.

4.3 Energy vs Robustness
Assumption: Energy consumption is always the preeminent
concern, therefore any feature should have little or no increased
energy impact.

Reality: Robustness is more important than energy usage; energy
usage focus is easily misapplied. Domain scientists do not want
to trade data away for less frequent battery changes—complete
data sets over weeks are important.

Impact: Perhaps the most potent example of misapplied energy
conservation in ESS occurred in the early developers’ extensive
focus on minimizing packet header and payload overhead, with
attendant increases in code complexity or decreases in robustness
or functionality. This effort was rendered moot by our later
adoption of BMAC/LPL, which in our usage prepends every 40ish
byte application packet with a multi-hundred-byte preamble—in
this mode, what’s another byte or two… or even ten or twenty?

Another energy example is our initial attempt to treat node and
network startup phases the same as the long-life phases: long
intervals between data samples, slow reconstruction of network
connectivity graphs, avoidance of energy-draining LEDs on
motes, etc. We have since learned from a plethora of painful
initial deployments (and re-deployments) that expending a
bounded amount of energy at the outset to flash LEDs as an
indication of healthy mote start-up, followed by short-interval
sensor sampling and reporting, and rapid connection to
neighboring nodes—all are indispensable tools to assure a degree
of node and network health while the human team is onsite and
able to diagnose and repair problems relatively easily.

4.4 Vertical integration
Assumption: Providing tools that dealt effectively with the
sensor-to-microserver levels (e.g, ESS) was a sufficient
contribution to the state-of-the-art to enable successful use by
domain scientists; users could easily provided back-end database
and display tools.

Reality: The pathway from microserver to database is non-
trivial; even in our test deployments, ESS developers needed data
display tools to reduce the effort in analyzing sensor network
system health.

Impact: Now positioned between ESS and Sensorbase are a
collection of tools that establish and maintain network
connections between the two environments. ESS commonly uses
either GPRS or 802.11b links between the microserver base-
station and a wired network infrastructure. GPRS links in
particular are often broken and re-established at lower levels,
which often results in non-transparent new IP address assignment.
Firewalls outside the control of either ‘end’ (sensor network or
DB facility) also frequently limit flexibility in creating
connections from DB end towards sensor network. The result is
that tools that robustly push data from microserver to DB host
despite frequent connection disruption are essential.

4.5 Real-time visibility
Assumption: The domain scientist would know, in advance, the
desired placement of sensor nodes.

Reality: A domain scientist is often working in uncharted
experimental territory, and doesn’t know initially where best to
place sensor nodes. Further, even with data in hand from an
initial deployment, she might need to interactively experiment
with sensor re-alignment or additional sensor placement.

Impact: The scientist needs not merely interactive tools at a node
level, but also needs to see node-level data in the context of
current and historical data from the extant network as well as
other external data sources (e.g., satellite imagery, data from
similar experiments at other locations, etc.) Our team is currently
prototyping a new tool, Emissary, which leverages ESS,
SensorBase.org, DAS, real-time status, and other integrated tools
to provide this class of capability to domain scientists.

5. SUMMARY
ESS is a maturing tool useful in deploying and maintaining sensor
networks for environmental science applications. The current
version benefits from a number of important lessons learned over
several years of deployments and use in a variety of settings.
Lesson areas include connectivity, interactivity, energy and
robustness, vertical integration, and real-time visibility.

6. ACKNOWLEDGMENTS
ESS is the result of a series of joint efforts over several years;
early developers included Eric Osterweil and Ning Xu; routing

algorithm developers were Ben Greenstein, Tom Schoellhammer,
and Thanos Stathapoulos; DSE was written by Tom Schoellham-
mer; Sympathy was written by Nithya Ramanathan; the low-level
data-sampler was created by Mohammad Rahimi; Rahul Kapur
built the persistent data buffer; Kevin Chang fathered Sensor-
Base.org; John Hicks and Karen Weeks provide ongoing feature
integration and quality assurance support. Thanks also to our
intrepid early adopters, Tom Harmon and John Ewart at UC
Merced, Eric Graham and Mike Taggart at James Reserve, and
Jenny Jay and Sara Rothenberg in CENS.

This material is based upon work supported by the National
Science Foundation under Grant No. CCF-0120778. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

7. REFERENCES
[1] http://tinyos.net
[2] http://cvs.cens.ucla.edu/emstar
[3] http://sensorbase.org
[4] http://sensorbase.org/~kchang/emissary/das
[5] http://www.jamesreserve.edu
[6] http://www.botgard.ucla.edu/bg-home.htm
[7] http://xbow.com

