
UCLA
Technical Reports

Title
Experiences with the Extensible Sensing System ESS

Permalink
https://escholarship.org/uc/item/60k9t66z

Authors
Richard Guy
Ben Greenstein
John Hicks
et al.

Publication Date
2006

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/60k9t66z
https://escholarship.org/uc/item/60k9t66z#author
https://escholarship.org
http://www.cdlib.org/


Experiences with the Extensible Sensing System ESS 
Richard Guy, Ben Greenstein, John Hicks, Rahul Kapur, Nithya Ramanathan,  

Tom Schoellhammer, Thanos Stathopoulos, Karen Weeks,  
Kevin Chang, Lew Girod, Deborah Estrin 

UCLA Center for Embedded Network Sensing 
3563 Boelter Hall, UCLA   

Westwood, CA 90095-1596 
01-310-825-3127 

rguy@cens.ucla.edu 
ABSTRACT 
The Extensible Sensing System (ESS) has been in use for several 
years in a variety of sensor network deployments.  It is a key 
component of a collection of tools that together are a nearly 
complete, end-to-end, sensor-to-user facility for deploying and 
managing a sensor network.  This paper provides the context and 
architectural overview of ESS, along with selected deployment 
details and a series of lessons learned. Lesson areas include 
connectivity, interactivity, energy vs. robustness, vertical integra-
tion, and real-time visibility.  The current version of ESS reflects 
changes from these lessons; further, new tools are in development 
that complement ESS. 
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1. INTRODUCTION 
Environmental sensing applications commonly share a sampling 
model in which most nodes in the network are homogenous, in the 
sense that many nodes will share identical sensors that will all be 
tasked to sample with the same frequency and at the same time.  
The data from each sensor will be returned to a ‘sink’ node, where 
it is collected and then transferred to an external data repository 
for archival and analysis. 

The Environmental Sensing System (ESS) is a key component of 
a system that a domain scientist (e.g., botanist, ecologist) would 
employ for a long-duration study of the environment at a fine-
grained spatial and temporal density: a complete environmental 
data collection, archival, and analysis system.  Figure 1 shows a 
detailed view of such an overall system. 
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Figure 1: Overall sensing system levels and the corresponding 
software application that manages each level. 

ESS is a software application that spans the lower tiers of this 
overall system architecture, from sensor to microserver base-
station.  It provides high-level interfaces for controlling data 
sampling, transformation, and collection from the sensor network; 
it also includes lower-level tools such as energy-efficient routing 
algorithms and sensor interface drivers.  A primary goal of ESS is 
that it be suitable for multi-year deployments. 

ESS leverages two primary software development and deploy-
ment environments:  TinyOS at the low-power platform level and 
Emstar at the microserver base-station level.  TinyOS [1] is an 
operating environment designed for resource-constrained plat-
forms such as the Crossbow Mica mote family of low-power 
wireless sensor network processor boards.  TinyOS includes a 
variety of useful tools, including a radio stack for the Mica2’s 
CC1000 20Kbps radio.  This stack contains a basic radio driver 
(ie, physical and link layer protocols) and a tunable energy-
efficient medium access control layer (BMAC with low-power 
listen). 

Emstar [2] is a sensor network development environment that 
primarily supports higher-power platforms that run the Linux 
operating system. One key Emstar tool is EmTOS, a real-time 
TinyOS simulator.  EmTOS enables the TinyOS application code 
that normally executes on a mote platform to be simulated on a 
higher-powered Linux platform, and further allows for easy inter-
facing to other Emstar services. Emstar also provides easy-to-use 
hooks into EmTOS to allow for export of TinyOS application 
control and status interfaces. 

In a simple sensor network with a collection of motes and a single 
micro-server (the common ESS deployment model to date), 
Emstar’s main contributions are EmTOS and interface services to 
applications external to Emstar.  However, in more complex 
environments, with multiple microservers (either redundantly in 
one network or as gateways for several networks), Emstar is 
leveraged much more extensively. 

While control of the sensor network, and retrieval of data from the 
sensors for collection at the microserver base-station, is an essen-
tial foundation for a sensor network system, a domain scientist 
needs much more:  she needs the data moved from a remote field-
deployed microserver to a database environment that enjoys well-
connected access, high-quality power, significant computation 
resources, backup services, and so on—services routinely avail-
able at most institutional computation centers.  To this end, ESS is 
augmented by SensorBase.org, a recent experiment in providing a 
centralized repository that allows people to easily publish and 
share a specific domain of environmental sensor network data. 
SensorBase.org [3] is a web site and a database designed for ESS-
specific environmental sensor network data. It provides users a 



uniform and consistent method for publishing sensor network 
data. It allows users to define data types, groups, and permission 
levels. It is also a sensor network search engine, which allows 
users to query for specific data sets based on geographic location, 
sensor type, date/time range, and other relevant fields.  Figure 2 
shows the entire schema of just 15 tables. 
 

 
Figure 2:  The SensorBase.org relational database schema. 
SensorBase.org will be used by domain scientists, in particular, 
along with conventional data analysis tools such as MATLAB, 
Excel and gnuplot.   
Our Deployment Analysis System (DAS) [4] is a web-based tool 
that interfaces to SensorBase.org and provides useful and concise 
displays of various aspects of a sensor network deployment.  
Summary charts and graphs provide easy access to current and 
historical data, including both domain data and system health 
data.  The latter is extensively used to monitor and diagnose 
problems.  Figure 3 shows a sample DAS display. 
 

 
Figure 3: Sample DAS display. 
In the sequel, we present an overview of the ESS architecture and 
key components in Section 2, followed in Section 3 by a brief 
summary of some typical ESS deployments.  Section 4 lays out 
the most important lessons learned from our deployment 
experiences. 

2. ESS ARCHITECTURE 
ESS is composed of a small number of well-modularized compo-
nents.  These include: standard TinyOS scheduler and CC1000 
radio stack (including BMAC/LPL low-power listen); standard 
Crossbow MDA300 sensor board driver; several experimental 
message routing services; time management service; persistent 
data buffer; Sympathy system status service; and the DSE Data 
Sampling Engine. 

2.1 DSE 
The DSE Data Sampling Engine provides the control and data 
export interfaces, and thus drives the rest of the application.  The 
DSE sampling model uniquely labels each sensor type and sensor 
board channel combination.  (The vast majority of existing sen-
sors on the market are not self-identifying, so the burden is on the 
senor deployer to correctly attach the sensor wiring to the desired 
sensor board channel.  DSE is pre-configured with a large number 
of existing sensors and possible channel mappings.) 

DSE supports several classes of queries, including one-time 
queries (to be executed upon receipt by each node with the 
appropriate sensors) and periodic queries (executed on receipt, 
plus infinitely often at the specified interval).  A query may be 
aggregate over several sensor types for concurrent sampling, or 
specify a single sensor type.  DSE attaches a locally-generally 
timestamp for each data sample.  A typical example ESS query 
specifies a 300 second periodic query interval, sampling a 
temperature thermistor on channel 0 (a 2.5V excitation reference) 
and concurrently sampling a relative humidity sensor on channel 1 
(a 3.3V excitation reference) and also the (battery) supply voltage 
to the node.  DSE is pre-programmed with the excitation duration 
and any delay to follow prior to the actual sample. 
The control interface also includes features to delete a previously 
established query, add new sensor configuration parameters, and 
inspect current query and sensor configuration parameters. 
DSE assumes an unreliable broadcast flooding model for query 
dissemination, and neglible network forwarding delay.  Periodic 
queries are flooded from the microserver at intervals usually much 
larger than the query’s period; nodes that fail to receive the initial 
query (or have lost the query due to a node reboot after a battery 
swap, for example) are likely to receive it at some future point. 

One important exception to this query dissemination model arises 
in cases where no microserver is within range (directly or 
indirectly) of a sensor node.  For example, subterranean 
deployment of wireless sensor nodes in a set of caves presents 
very difficult RF connectivity issues.  ESS can be used in this 
setting by pre-configuring each sensor node with a default query 
which takes effect immediately at boot time.  Another method is 
to carry a portable microserver for use in initiating queries at 
deployment, and then ‘disconnecting’ simply by leaving the area.  
So-called “lonely motes” have been deployed in the former 
fashion, using default queries to collect data for several weeks; 
they were then physically retrieved and placed near a microserver 
for data upload. 

2.2 Routing 
ESS has several compile-time-selectable routing services, 
including a basic beacon-based multihop service (multihop), a 
centralized routing service (centroute), and an advanced 
distributed routing service (hyper).  ESS assumes that the 



dominant communication pattern in a sensor network is node-to-
sink (carrying data in response to queries), and therefore 
optimizing routing for that pattern is paramount.  All of the ESS 
routing services create a routing tree used primarily for moving 
data from sensor nodes to sink node.  No point-to-point 
mechanism exists for sink-to-node communication, under the 
assumption that the dominant communication paradigm for 
messages originating at the sink is one-to-all.  Although messages 
from node to sink are point-to-point in that a rooted acyclic path is 
followed, no other notion of arbitrary node-to-node 
communication is provided. 

The beacon-based multihop routing service uses periodic beacons 
to assess link quality between nodes and passes that data to the 
designated sink node, where a routing tree is constructed and 
disseminated via flooding to the sensor network.  Newly booted 
nodes send out beacons at an accelerated rate, to spur any 
neighbors to push their (by definition, new) link quality data to the 
sink node, where a new energy-efficient routing tree will be 
constructed and disseminated. This service has been in use for 
nearly two years on a number of deployments, ranging from 2 to 
27 nodes each; as with many first-effort routing algorithm 
implementations, it works well with stable links and less so with 
very weak critical links. 

More recent routing algorithm implementations include centroute 
and hyper. 

Centroute is a centralized tree-based routing protocol, in that all 
control decisions are made in a single point, the microserver 
(which is also the root of the tree). The protocol uses source 
routing in addition to a centralized decision point in order to avoid 
loops. In addition, only constant state is kept on the motes 
themselves (information about their parent) so the protocol scales 
well with increasing network density (in contrast, protocols that 
maintain neighbor lists on each mote have scalability issues when 
density increases). Centroute is able to maintain higher than 99% 
connectivity in medium or high-density networks while incurring 
a low overhead. 

The Hyper routing protocol creates routing trees in response to a 
‘tree formation’ message flooded from the sink (root) node. Every 
node waits a short period to collect path cost estimates from 
neighbors, selects the lowest cost path as the preferred path to the 
root, and in turn floods out that estimate.  Experimental results 
suggest that a stable, high-quality tree can be formed in under a 
second.  In addition to building quality routes quickly, Hyper also 
includes several features to support fast convergence.  When a 
node boots it can quickly assess its neighborhood, graft onto an 
existing tree, and get time synchronization information from 
neighbors.  These features make deployment and maintenance 
easy, reducing the amount of time spent per node.  

2.3 Time Management 
Ideally, data samples are timestamped at the instant the sample is 
taken, with the time provided by a very high-quality time 
reference.  In practice, timestamps suffer from both delay in 
receiving a reference value and internal clock drift.  Sensor 
network platforms can suffer from an additional malady:  the 
absence of battery-backed clocks in the presence of power 
interruptions (e.g., primary battery failure) or manual reset.  ESS 
periodically floods a time reference value from sink to nodes, both 
to limit clock drift on the mote hardware and to ensure that power-

cycled nodes receive a valid time value relatively soon.  Because 
most data sample intervals are on the order of tens or hundreds of 
seconds, accumulated time error resulting from varying hop 
latencies and drift (on the order of milliseconds, or even tenths of 
seconds) are insignificant. 

2.4 Persistent storage 
Experience with early versions of ESS in real deployments 
quickly showed that connectivity in the wild is much worse than 
in-lab experiences had suggested.  In particular, nodes frequently 
could not maintain sufficient link quality with neighbors to 
reliably transport data packets across a multi-hop network to the 
sink.  This was exacerbated by limited availability of mote RAM 
for buffering in-transit data packets.  The ESS solution is to use 
the on-board EEPROM as a persistent data store for packets that 
aren’t immediately acknowledged by an upstream neighbor.  This 
store can hold about 40,000 individual data samples, which is 
sufficient for nearly two node-weeks of 120 samples/hour. 

2.5 Sympathy 
Sympathy is a prototype tool for detecting and debugging failures 
in pre- and post-deployment sensor networks.  Sympathy has 
selected metrics that enable efficient failure detection; nodes 
periodically transmit a subset of these metrics back to a sink, 
which combines this information with passively-gathered metrics 
to detect failures and determine their causes. Sympathy also 
includes a fault-tree algorithm that root-causes failures and 
localizes their sources in order to reduce overall failure 
notifications and point the user to a small number of probable 
causes. 

Sympathy gathers and analyzes general system metrics such as 
nodes' next hops and neighbors. Based on these metrics, it detects 
which nodes or components have not delivered sufficient data to 
the sink and infers the causes of these failures.  

3. DEPLOYMENTS 
ESS has been deployed in a range of settings, from forest to farm 
and botanical garden to Bangladesh.  Our longest and largest 
deployments have been at the University of California’s James 
Reserve [5] in the San Jacinto National Forest near Palm Springs 
(1.5 years, 20-27 nodes); smaller or younger deployments are 
present in a farm in the high desert of Palmdale, California (1.5 
years, 2 nodes) and at the UCLA Botanical Garden [6] (3 mos, 24 
nodes); our most recent and novel deployment was for two weeks 
in a rice paddy near Dhaka, Bangladesh. 

A typical ESS microserver consists of an Intel Stargate, equipped 
with either a GPRS Sony Ericsson Edge modem card or a 200mW 
SMC 802.11b card; a solar panel, charge controller and 100Ahr 
battery; and a ‘transceiver’ gateway Mica2 mote to bridge to the 
sensor network array of motes. 

A typical ESS node comprises a Crossbow [7] Mica2 mote with 
433MHz CC1000 radio; Crossbow MDA300 sensor interface 
board; and 2-8 sensors.  One James Reserve transect of 27 nodes 
uses simple temperature and relative humidity sensors jointly 
housed in a solar shielded enclosure at each node; another 10-
node transect includes additional sensors for wind, wind gust, 
rainfall, and soil moisture on many nodes.  The Bangladesh 
experiment involved 12 motes with up to four nitrate, calcium, or 
phosphate sensors each.  The motes are commonly equipped with 



a single LiSO2 D-cell at 3.6V or 3.0V; occasionally a pair of 1.5V 
alkaline cells (AA, C, or D) is used instead.  Figure 4 shows a 
typical micro-climate monitoring node. 

   

Figure 4: A typical ESS micro-climate monitoring node. 

4. LESSONS LEARNED 
ESS is now in its third year and second major version. Imperfect 
assumptions about how sensor networks would be used, and 
technology change, have promoted improvements. 

4.1 Connectivity 
Assumption:  A sensor network is dense, implying easy ongoing 
RF connectivity. 

Reality: Sensor installation is labor-intensive, encouraging 
carefully chosen sites; science-driven placement rarely yields 
quality RF paths; installation is usually done in daylight and good 
weather and minimal foliage, when RF conditions are best.  
However, nightfall, precipitation and plant growth happens! 

Impact: Software at all levels (mote, microserver, DB host) must 
assume disconnection is normal—for all control, monitoring, and 
data collection activities; this includes disconnection between 
microserver and outside world.  The three most important 
impacted issues are tasking, time dissemination, and data 
buffering.  (Neither Mica2 mote nor Stargate have battery-backed 
clocks; power cycling in isolation yields ‘timeless’ data, which is 
often forever useless!)   

Another effect is seen in our growing use of  “relay motes” which 
do not service sensors, but simply act to plug network 
connectivity gaps.  These motes are often placed at a higher 
elevation plane, where fewer obstructions might be found.  These 
additional motes may stress network routing algorithms that have 
a dependency on neighbor density and overall scale. 

4.2 Interactivity 
Assumption:  Hardware and software would work in the wild, 
much as in the lab; so, one could physically deploy a complete 
network rapidly in a convenient order and later look at the data 
stream (at microserver or even DB host) to identify problems. 

Reality: Hardware breaks or is carelessly manufactured or 
installed; it is very hard to identify the nature of failure at a 
distance (either physical or time). 

Impact: Sensor network deployment is by necessity an 
incremental, interactive, time-consuming activity.  The software 
architecture must support interactive control and monitoring of an 

individual node while the node is being assembled and installed in 
the field.  This further implies the need for a portable pseudo-
microserver to interact temporarily with a node during 
installation. 

4.3 Energy vs Robustness 
Assumption: Energy consumption is always the preeminent 
concern, therefore any feature should have little or no increased 
energy impact. 

Reality:  Robustness is more important than energy usage; energy 
usage focus is easily misapplied.  Domain scientists do not want 
to trade data away for less frequent battery changes—complete 
data sets over weeks are important.   

Impact: Perhaps the most potent example of misapplied energy 
conservation in ESS occurred in the early developers’ extensive 
focus on minimizing packet header and payload overhead, with 
attendant increases in code complexity or decreases in robustness 
or functionality.  This effort was rendered moot by our later 
adoption of BMAC/LPL, which in our usage prepends every 40ish 
byte application packet with a multi-hundred-byte preamble—in 
this mode, what’s another byte or two… or even ten or twenty? 

Another energy example is our initial attempt to treat node and 
network startup phases the same as the long-life phases:  long 
intervals between data samples, slow reconstruction of network 
connectivity graphs, avoidance of energy-draining LEDs on 
motes, etc.  We have since learned from a plethora of painful 
initial deployments (and re-deployments) that expending a 
bounded amount of energy at the outset to flash LEDs as an 
indication of healthy mote start-up, followed by short-interval 
sensor sampling and reporting, and rapid connection to 
neighboring nodes—all are indispensable tools to assure a degree 
of node and network health while the human team is onsite and 
able to diagnose and repair problems relatively easily. 

4.4 Vertical integration 
Assumption: Providing tools that dealt effectively with the 
sensor-to-microserver levels (e.g, ESS) was a sufficient 
contribution to the state-of-the-art to enable successful use by 
domain scientists; users could easily provided back-end database 
and display tools. 

Reality:  The pathway from microserver to database is non-
trivial; even in our test deployments, ESS developers needed data 
display tools to reduce the effort in analyzing sensor network 
system health. 

Impact: Now positioned between ESS and Sensorbase are a 
collection of tools that establish and maintain network 
connections between the two environments.  ESS commonly uses 
either GPRS or 802.11b links between the microserver base-
station and a wired network infrastructure.  GPRS links in 
particular are often broken and re-established at lower levels, 
which often results in non-transparent new IP address assignment.  
Firewalls outside the control of either ‘end’ (sensor network or 
DB facility) also frequently limit flexibility in creating 
connections from DB end towards sensor network.  The result is 
that tools that robustly push data from microserver to DB host 
despite frequent connection disruption are essential. 



4.5 Real-time visibility 
Assumption:  The domain scientist would know, in advance, the 
desired placement of sensor nodes. 

Reality: A domain scientist is often working in uncharted 
experimental territory, and doesn’t know initially where best to 
place sensor nodes.  Further, even with data in hand from an 
initial deployment, she might need to interactively experiment 
with sensor re-alignment or additional sensor placement. 

Impact:  The scientist needs not merely interactive tools at a node 
level, but also needs to see node-level data in the context of 
current and historical data from the extant network as well as 
other external data sources (e.g., satellite imagery, data from 
similar experiments at other locations, etc.)  Our team is currently 
prototyping a new tool, Emissary, which leverages ESS, 
SensorBase.org, DAS, real-time status, and other integrated tools 
to provide this class of capability to domain scientists. 

5. SUMMARY 
ESS is a maturing tool useful in deploying and maintaining sensor 
networks for environmental science applications.  The current 
version benefits from a number of important lessons learned over 
several years of deployments and use in a variety of settings.  
Lesson areas include connectivity, interactivity, energy and 
robustness, vertical integration, and real-time visibility. 
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