Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

High-throughput screening of hypothetical metal-organic frameworks for thermal conductivity

Abstract

Thermal energy management in metal-organic frameworks (MOFs) is an important, yet often neglected, challenge for many adsorption-based applications such as gas storage and separations. Despite its importance, there is insufficient understanding of the structure-property relationships governing thermal transport in MOFs. To provide a data-driven perspective into these relationships, here we perform large-scale computational screening of thermal conductivity k in MOFs, leveraging classical molecular dynamics simulations and 10,194 hypothetical MOFs created using the ToBaCCo 3.0 code. We found that high thermal conductivity in MOFs is favored by high densities (> 1.0 g cm−3), small pores (< 10 Å), and four-connected metal nodes. We also found that 36 MOFs exhibit ultra-low thermal conductivity (< 0.02 W m−1 K−1), which is primarily due to having extremely large pores (~65 Å). Furthermore, we discovered six hypothetical MOFs with very high thermal conductivity (> 10 W m−1 K−1), the structures of which we describe in additional detail.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View