Skip to main content
Open Access Publications from the University of California
Notice: eScholarship will undergo scheduled maintenance from Tuesday, January 21 to Wednesday, January 22. Some functionality may not be available during this time. Learn more at eScholarship Support.
Download PDF
- Main
How many skin barriers haveth we: Percutaneous egression of ions?
Abstract
Introduction
Skin provides critical barrier properties that enable terrestrial life. Myriad research has focused on the "water barrier" to transepidermal water loss (TEWL) despite there being a multitude of skin barrier properties. We asked what other barrier properties may have been overlooked and compiled data demonstrating the "electrolyte barrier" to be of potential clinical relevance.Methods
A literature search was conducted through PubMed, Embase, Google Scholar, and Web of Science databases for the following keywords: "transepidermal" or "epidermal" or "cutaneous" or "skin" or "percutaneous" and "ion" or "sodium" or "chloride" or "potassium" or "electrolyte" and "flux" or "egression." Textbooks at the University of California, San Francisco were also hand reviewed. Experimental studies quantifying in vivo or ex vivo percutaneous egression of ions in response to human skin barrier perturbation were included.Results
Experimental damage to skin, mostly by tape-stripping, frequently induced increased ion flux rates through the epidermis, in addition to increases in TEWL values. Interestingly, barrier perturbation did not always result in a concomitant rise in TEWL and transepidermal ion flux rates, such as in delipidization, indicating a distinction between the two barriers.Conclusion
Quantifying the percutaneous egression of ions in response to physical or chemical alterations may offer additional data that are not to be captured with TEWL studies exclusively. Continued efforts should be made to: (1) advance this technique as a method of assessing skin status and (2) enhance our understanding of other barriers and mechanisms.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%