- Main
Dopamine and Norepinephrine Tissue Levels in the Developing Limbic Brain Are Impacted by the Human CHRNA6 3-UTR Single-Nucleotide Polymorphism (rs2304297) in Rats.
Published Web Location
https://doi.org/10.3390/ijms25073676Abstract
We previously demonstrated that a genetic single-nucleotide polymorphism (SNP, rs2304297) in the 3 untranslated region (UTR) of the human CHRNA6 gene has sex- and genotype-dependent effects on nicotine-induced locomotion, anxiety, and nicotine + cue-induced reinstatement in adolescent rats. This study aims to investigate how the CHRNA6 3-UTR SNP influences dopaminergic and noradrenergic tissue levels in brain reward regions during baseline and after the reinstatement of drug-seeking behavior. Naïve adolescent and adult rats, along with those undergoing nicotine + cue reinstatement and carrying the CHRNA6 3-UTR SNP, were assessed for dopamine (DA), norepinephrine (NE), and metabolites in reward pathway regions. The results reveal age-, sex-, and genotype-dependent baseline DA, NE, and DA turnover levels. Post-reinstatement, male α6GG rats show suppressed DA levels in the Nucleus Accumbens (NAc) Shell compared to the baseline, while nicotine+ cue-induced reinstatement behavior correlates with neurotransmitter levels in specific brain regions. This study emphasizes the role of CHRNA6 3-UTR SNP in the developmental maturation of the dopaminergic and noradrenergic system in the adolescent rat brain, with tissue levels acting as predictors of nicotine + cue-induced reinstatement.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-