Skip to main content
eScholarship
Open Access Publications from the University of California

Uptake of chemically modified low density lipoproteins in vivo is mediated by specific endothelial cells.

  • Author(s): Pitas, RE
  • Boyles, J
  • Mahley, RW
  • Bissell, DM
  • et al.
Abstract

Acetoacetylated (AcAc) and acetylated (Ac) low density lipoproteins (LDL) are rapidly cleared from the plasma (t1/2 approximately equal to 1 min). Because macrophages, Kupffer cells, and to a lesser extent, endothelial cells metabolize these modified lipoproteins in vitro, it was of interest to determine whether endothelial cells or macrophages could be responsible for the in vivo uptake of these lipoproteins. As previously reported, the liver is the predominant site of the uptake of AcAc LDL; however, we have found that the spleen, bone marrow, adrenal, and ovary also participate in this rapid clearance. A histological examination of tissue sections, undertaken after the administration of AcAc LDL or Ac LDL (labeled with either 125I or a fluorescent probe) to rats, dogs, or guinea pigs, was used to identify the specific cells binding and internalizing these lipoproteins in vivo. With both techniques, the sinusoidal endothelial cells of the liver, spleen, bone marrow, and adrenal were labeled. Less labeling was noted in the ovarian endothelia. Uptake of AcAc LDL by endothelial cells of the liver, spleen, and bone marrow was confirmed by transmission electron microscopy. These data suggest uptake through coated pits. Uptake of AcAc LDL was not observed in the endothelia of arteries (including the coronaries and aorta), veins, or capillaries of the heart, testes, kidney, brain, adipose tissue, and duodenum. Kupffer cells accounted for a maximum of 14% of the 125I-labeled AcAc LDL taken up by the liver. Isolated sinusoidal endothelial cells from the rat liver displayed saturable, high affinity binding of AcAc LDL (Kd = 2.5 X 10(-9) M at 4 degrees C), and were shown to degrade AcAc LDL 10 times more effectively than aortic endothelial cells. These data indicate that specific sinusoidal endothelial cells, not the macrophages of the reticuloendothelial system, are primarily responsible for the removal of these modified lipoproteins from the circulation in vivo.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View