Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Placental-brain axis in females detected within broadly impacted metabolic gene networks protects against prenatal PCB exposure

Abstract

Background

Neurodevelopmental disorders have a strong male bias that is poorly understood. Placenta is a rich source of molecular information about environmental interactions with genetics (including biological sex), that affect the developing brain. We investigated placental-brain transcriptional responses in an established mouse model of prenatal exposure to a human-relevant mixture of polychlorinated biphenyls (PCBs).

Results

To understand sex, tissue, and dosage effects in embryonic (E18) brain and placenta by RNAseq, we used weighted gene correlation network analysis (WGCNA) to create correlated gene networks that could be compared across sex or tissue. WGCNA revealed that expression within most correlated gene networks was significantly and strongly associated with PCB exposures, but frequently in opposite directions between male-female and placenta-brain comparisons. In both WGCNA and differentially expressed gene analyses, male brain showed more PCB-induced transcriptional changes than male placenta, but the reverse pattern was seen in females. Furthermore, non-monotonic dose responses to PCBs were observed in most gene networks but were most prominent in male brain. The transcriptomic effects of low dose PCB exposure were significantly reversed by dietary folic acid supplementation across both sexes, but these effects were strongest in female placenta. PCB-dysregulated and folic acid-reversed gene networks were commonly enriched in functions in metabolic pathways involved in energy usage and translation, with female-specific protective effects enriched in PPAR, thermogenesis, glycerolipids, and O-glycan biosynthesis, as opposed to toxicant responses in male brain.

Conclusions

The female protective effect in prenatal PCB exposures appears to be mediated by dose-dependent sex differences in transcriptional modulation of metabolism in placenta.

Graphical Abstract

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View