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ABSTRACT

The Giant Magellan Telescope (GMT) consists of seven 8.365 m segments with a separation of 0.345 m. A unique
challenge for GMT lies in phasing these segments and, in particular, how to measure segment piston optically.
In this paper, we present a results of a phasing strategy using a non-redundant pupil mask. We show how this
method can be extended to measure segment piston differences of more than half a wave by using broadband
light.
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1. INTRODUCTION

The Giant Magellan Telescope (GMT) consists of seven 8.365m segments with a separation of 0.345m. A unique
challenge for GMT lies in phasing these segments and, in particular, how to measure segment piston optically.
In order to image at the diffraction limit of the telescope (equivalent to a diameter of approximately 25.4m),
it is crucial to phase the primary and secondary mirrors to a fraction of the imaging wavelength. There are
two planned diffraction-limited adaptive optics (AO) modes for the GMT, which require a phased telescope.1

A natural guide star adaptive optics (NGS AO) system with a visible light pyramid wavefront sensor is used
when there is a sufficiently bright star near the science target. For greater sky coverage, there is also a laser
tomography adaptive optics (LTAO) system that employs six side-projected laser guide stars, along with a single
natural guide star to measure tip-tilt. This tip-tilt star can be much fainter and further away from the science
target than the star used NGS AO. The proposed solution to the telescope optical phasing problem is addressed
elsewhere.2,3

In addition to telescope segment piston, adaptive optics (AO) corrected observations using the GMT will suffer
from atmospheric segment piston. Atmospheric segment piston is the error in estimating the segment piston
component of the atmospheric wavefront. The Shack-Hartmann WFS (SHWFS) does not measure discontinuities
in the wavefront. As a consequence, the reconstructed wavefront is the smoothest wavefront consistent with the
wavefront slope measurements. The difference between the true wavefront and the wavefront reconstructed from
wavefront slope measurements is of the order of 100 nm for an LTAO system and 150 nm for a SHWFS based
NGS AO system.4

The GMT NGS AO system will use a pyramid wavefront sensor (PWFS) to measure the wavefront. The
PWFS has been shown to be more sensitive than the SHWFS. Another nice property of the PWFS is the ability
to measure phase differences,5 which makes it ideal for a segment telescope like the GMT. The ability to sense
segment piston with a PWFS is limited by two factors. First, any segment phase errors of greater than half
a wave will alias into an incorrect measurement due to the well known 2π phase ambiguity. Second, in the
presence of residual wavefront errors, the sensitivity of the segment piston measurement degrades significantly.
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The residual aberrations can stem from worse than average seeing or from strong windshake which not only
shakes the whole telescope, but makes the individual segments shake independently of each other. As a result,
the segment piston measurements from the PWFS can lead to a wavefront reconstruction where one or more
segments have an incorrect value by an integer number of wavelengths. The baseline solution is to use a second
channel with a second PWFS at a different wavelength and to use the wavelength diversity to disentangle the
phase jumps.6

In this report, we investigate a different technique to measure segment piston problem based on a non-
redundant aperture mask. This technique, called Fizeau interferometric cophasing of segmented mirrors (FICSM),
was used in simulations of the JWST7 and in laboratory studies8 by Cheetham et al to measure tip-tilt and
phase errors.

In Section 2, we explain how the FICSM sensor works. We show in Section 3 that, by using broadband light,
we can overcome the 2π ambiguity inherent in interferometric methods and make segment piston measurements
of several waves. Numerical simulation results are presented in Section 4, followed by conclusions in Section 5.

2. NARROWBAND FICSM

A non-redundant aperture mask is a pupil mask with a number of circular holes. The light from the different
holes interferes and the resulting image can be used to estimate the difference in phase between the holes. By
judicious selection of the location of the holes, each pair of holes has a different baseline and each baseline can
be unambiguously extracted from the image at the focal plane. To be strictly non-redundant, the hole diameter
must be less than or equal to half the shortest baseline. When using broadband light, the size of the holes
must be decreased to avoid the baselines overlapping in Fourier space. The pupil mask used in this report, with
one hole per segment, is reproduced in Fig. 1. The holes in the mask have a diameter of 2.5m when using
narrowband and 2.0m when using broadband light. Let us consider a flat wavefront with a single poked segment

Figure 1: The non-redundant pupil mask used in this paper. The gray area is the telescope pupil, while the
white circles represent the holes in the pupil mask.

imaged through the non-redundant pupil mask, as shown in Fig. 2. We take the Fourier transform of the image
and extract its phase, a quantity we call the “Fourier phase” (Fig. 2). There are 42 measurements, but only 21
are independent, since the other 21 phase estimates are identical but with a negative sign. The six measurements
that show a positive phase correspond to the phase difference between the poked segments and each of the six
poked segments. The other measurements, which compare the unpoked segments, are all zero.

Mathematically, the phase is estimated from an image, I, in two steps. First, we find the Fourier phase,
θ(u, v) according to:

θ(u, v) = arg{F{I(x, y)}}, (1)



Figure 2: Single poked segment (left), resulting focal plane image (center), and Fourier phase of the image (right)
using monochromatic light.

where F{} denotes the Fourier transform and arg{} is the phase of the complex quantity. Then the phase
difference between holes k and l, φkl is estimated by integrating the Fourier phase over the circular area in the
Fourier plane, Pkl, that corresponds to the baselines between holes k and l:

φ̂kl =

∫
Pkl(u, v)θ(u, v)

Pkl(u, v)
. (2)

In the absence of any wavefront aberrations, the phase measurements are completely linear, and segment piston
can be reconstructed up to half a wavelength, as shown in Fig. 3. This algorithm also works with broadband

Figure 3: Response of the phase sensor to different poke amplitudes for narrowband light (black) and a filter
with a 20% bandwidth (blue).

light. In these simulations, we model broadband light as a top-hat function with a passband of 20% of the
central wavelength. Nine discrete wavelengths are used to emulate the broadband behavior. Resulting images
and the Fourier phase using broadband light are shown in Fig. 4. In practice, we use only a limited region of
the image, in order to limit the noise, as shown in Fig. 5. At distances far from the center of the image, the
noise dominates the signal. In addition, the information present in the images far from the center corresponds to
high spatial frequencies from atmospheric turbulence and not information about the piston difference between
the holes. To filter this high frequency information, the image is windowed. In our studies, two types of windows
are used: a hard circular window and a super Gaussian window. The hard window takes values of 1 inside the



Figure 4: Single poked segment (left), resulting focal plane image (center), and Fourier phase of the image (right)
using broadband light.

window and 0 elsewhere, while the super Gaussian window has an intensity that goes as exp[−r4], where r is the
radial distance from the center of the window. We find that that narrowband algorithm works better with hard
windows, while the broadband algorithm behaves better with a soft window. The optimal window diameter,
used in the simulations, is 0.1′′ for a wavelength of 0.8 µm, as shown in Fig. 5, and 0.25′′ at 2.2 µm.

Figure 5: Typical FICSM image with a square root stretch at 0.8 µm with r0 of 0.15m. The 0.1′′ diameter extent
window is shown in red.

The estimate of the phase difference between two holes is found by averaging the Fourier phase over a region,
as seen in Eq. (2). For monochromatic light, a region corresponding to twice the diameter of the hole can be
used to incorporate all of the baselines. However, using a smaller integration area gives more accurate results,
and the optimal diameter for Pkl is 1.5 times the hole diameter.

An even more interesting result is that using a single Fourier phase point at the center of Pkl leads to phase
estimates almost as good as using the much larger integration area. By using a single point, we eliminate issues
related to phase wrapping of the Fourier phase. As an example, consider Fig. 6, where one of the segments has
been poked by half a wave. For regions in the Fourier plane where the phase is wrapped, the phase estimate will
lie at at an unpredictable value somewhere between ±λ/2. If, instead, we use the center baseline to estimate
the phase, then the estimated phase will be very close to either −λ/2 or λ/2. Alternatively, a phase unwrapping
routine could be applied to the Fourier phase before integrating over the corresponding region, Pkl.

An alternative approach to reconstructing the phase from the FICSM images is to use a phase retrieval



Figure 6: Phase wrapping of the Fourier phase over the integration regions.

algorithm, such as the Gerchberg-Saxton algorithm.9 Because of the non-redundancy of the information in the
images, the convergence is very fast and does not appear to stagnate.

3. BROADBAND FICSM

When using the the narrowband algorithm (regardless of whether the passband is narrow or broad), we are
limited in capture range to half a wave before the measurement wraps, as seen in Fig. 3. The broadband phasing
algorithm, designed to increase the dynamic range of the sensor, takes advantage of the fact that a broadband
measurement of the segment piston error has a wavelength dependent signature. If we poke a segment by varying
amounts, we notice that the Fourier phase is not constant over the area of integration, but contains a tilt. This
is caused by the fact that the fringes corresponding to the long wavelength end of the filter are further from the
center of the image, and have a lower phase (since the piston is a smaller fraction of the wavelength). The way
that the phase varies across the Fourier plane is illustrated in Figs. 7 and 8.

Figure 7: The Fourier phase of the a broadband image for a segment poked by four waves..

In the original paper,7 Cheetham et al. suggests using a Chi-squared fit of the measured phase to a precom-
puted to determine the phase to within a wave. In our application, this is trickier because of the presence of



Figure 8: Fourier phase of one region resulting from a segment poked by (from left to right) one, two, three and
four waves.

random and unknown residual atmospheric turbulence.

A segment piston causes a linear tilt in the Fourier phase. Due to phase wrapping, the Fourier phase often
incurs phase jumps over Pkl, so trying to fit tip-tilt directly to the Fourier phase does not work.

The estimate of the phase difference between holes k and l is as follows. First, we obtain the Fourier phase
of the image, θ(u, v), as in the narrowband case. We wish to find the slope of Fourier phase over the integration
region, Pkl (e.g., the integration region shown in Fig. 8). By analogy with the SHWFS, we consider θ(u, v) to be
the phase of a wavefront and propagate this into the image plane to obtain the intensity of the spot, Ukl(x, y):

Ukl(x, y) = |F{Pklexp[iθ(u, v)]}|
2. (3)

We take advantage of the fact that a tilt in the phase leads to a displacement of an image irrespective of any
discontinuity in the phase. Finally, we calculate the center-of-gravity of the spot, Ukl(x, y) in the direction
between the two holes. We denote this center-of-gravity operator as G{}. The phase difference between holes k
and l is proportional to the center-of-gravity of the spot:

φ̂kl ∝ G{Ukl(x, y)} (4)

The proportionality constant is calculated by poking the segments and measuring the motion of the spot.

Any wavefront tip-tilt over the extent of the hole will also give rise to a similar signal (i.e., a linearly varying
θ(u, v)). From a single measurement of the slope of the Fourier phase, it is not possible to tell whether the signal
is caused by a piston error or a tip-tilt error. However, the signal can be disentangled using all the measurements,
since there are 42 measurements (21 measurements of the tip-tilt of the Fourier phase) and 21 unknowns (seven
piston values and fourteen tip-tilt values). A least-squares reconstructor is used to convert the slope estimates
into piston and segment tip-tilt estimates.

The response of the sensor is approximately linear over a wide capture range of several waves, as can be seen
in Fig. 9.

4. SIMULATION RESULTS

4.1 Simulation description

In order to understand the performance of the FICSM sensor, numerical simulations were run in YAO, a general
purpose end-to-end simulation tool written in the yorick language.10 Two applications were considered. First,
a pupil mask can be included in a science instrument such as GMTIFS, the GMT’s first-light AO-corrected
imager and spectrograph. From this, we can determine whether the telescope is correctly phased or not, but
unfortunately not while science data is being captured. The second application is to correct for atmospheric
segment piston while running the NGS AO system. The segment piston measurement from the FICSM sensor
can be used to correct the segment piston instead of the measurements from the PWFS, or it can be used to
determine whether the PWFS has led to a jump of one or more waves in a given segment.

The atmospheric parameters are derived from the typical-typical profile for January 2008 from Goodwin11

and are reproduced in Table 1 for convenience. The value of r0 is 0.151 m at a wavelength of 500 nm. An outer
scale of 60 m is assumed.



Figure 9: Response of the broadband phase sensor to different poke amplitudes at 0.8 µm with a flat input
wavefront.

Table 1: Turbulence profile used in the simulations

Elevation (m) Turbulence fraction Wind speed (m s−1) Wind direction (◦)

25 0.126 5.65 0.78
275 0.087 5.80 8.25
425 0.067 5.89 12.48

1250 0.350 6.64 32.50
4000 0.227 13.29 72.10
8000 0.068 34.83 93.20
13000 0.075 29.42 100.05

4.2 Measuring telescope segment piston using the science camera

In this application, we measure the segment piston error as seen by the science camera. GMTIFS uses a Hawaii-
4RG infrared detector with on-detector guide windows. These on-detector guide windows can be read faster
and with a lower read noise than reading out the whole array. The noise characteristics of the detector and the
associated photometric parameters used in the simulations are tabulated in Table 2.

Table 2: Photometric parameters used in the simulations of the FICSM sensor inside GMTIFS.

Central wavelength 2.179 µm
Photometric zero point 7.0×1011

Sky background (magnitude per arcsec2) 13.4
Optical throughput 55%
Quantum efficiency 85%
Noise excess factor 1
Read noise 3e−

Dark current 0e−

We are interested to see how well the FICSM sensor can measure segment piston when the LTAO system is
in operation. For simplicity, we replaced the LTAO system by a SHWFS-based NGS AO system with a single
guide star. Residual wavefronts were generated by simulating a 50 × 50 SHWFS running at 500Hz. This gives
a residual wavefront of 240 nm RMS, which is what we expect from the LTAO system. In addition, 200 nm of
random segment piston error was added to the wavefronts, and it is this segment piston which we would like to
measure.

The FICSM sensor operates at K-band, with 1 s exposures. The simulations as a function of guide star



magnitude are plotted in Fig. 10. It can be seen that the limiting magnitude of the narrowband algorithm is

Figure 10: RMS segment piston error as a function of K-band guide star magnitude using the narrowband (left)
and broadband (right) FICSM sensor behind the LTAO system.

about mK = 17 for 1 s integrations, and equally good results could be obtained with fainter stars by increasing
the exposure time. The simulations were repeated using the broadband piston sensor, which would be needed in
the unlikely case that the telescope phasing error is greater than 1 µm. The broadband sensor needs to estimate
the segment piston to within half a wave, at which point the narrowband algorithm can take over. The limiting
magnitude in this case is about mK = 14 for 1 s exposures.

4.3 Measuring atmospheric segment piston behind the pyramid wavefront sensor

As previously mentioned, the PWFS can measure segment piston at fast frame rates, but it can suffer from phase
jumps due to the 2π phase jump problem. There are two ways to resolve this: using a second measurement at a
different wavelength, or using broadband light.

First, we consider measuring segment piston at a second wavelength, λ2. If we assume that the PWFS channel
drives the segment piston error measurement, p(λ1) to zero, then the estimate of the true segment piston based
on a measurement at a second wavelength is

p̂ = p(λ2)
λ1

λ2 − λ1

. (5)

In this study, λ1=0.75 µm and λ1=0.85 µm. In order to estimate p̂ to within half a wave, the accuracy of the
second measurement needs to be less than 40 nm. Second, we measure segment piston using the broadband
FICSM sensor. Here, measuring to 300 nm provides sufficient accuracy. In both cases, the measurements are
made at a rate of 10Hz, using only 10% of the available light (the rest is passed to the PWFS).The photometric
and noise parameters are tabulated in Table 3.

Table 3: Photometric parameters used in the simulations of the FICSM sensor behind the pyramid sensor.

Passband Monochromatic Broadband

Central wavelength 0.850 µm 0.750 µm
Photometric zero point 0.90×1012 6.7×1012

Sky background (magnitude per arcsec2) 18.5 18.5
Optical throughput 5.5% 5.5%
Quantum efficiency 85% 85%
Noise excess factor 1.41 1.41
Read noise 0.5e− 0.5e−

Dark current 0e− 0e−

The wavefront corrected by the PWFS was obtained via simulation in PASSATA, an IDL-based Monte-Carlo
simulation tool written specifically to simulate the performance of pyramid sensors. 6 s of simulation data was



Figure 11: Example of the residual wavefront produced by the pyramid sensor.

generated, and the data used corresponded to the case where the correction had converged, but three segments
had been “ejected”, as can be seen in Fig. 11. The PWFS has 92× 92 subapertures and runs at 1 kHz, leading
to excellent correction with an RMS residual wavefront of 80 nm excluding segment piston errors.

The results are plotted in Fig. 12.

Figure 12: RMS segment piston error as a function of I-band guide star magnitude using the narrowband (left)
and broadband (right) FICSM sensor behind a PWFS.

5. CONCLUSION

In this paper, we evaluate the performance of FICSM to measuring segment piston on the GMT. This technique
uses a non-redundant pupil mask and an imaging camera. From the Fourier phase of the images, we are able
to measure segment piston unambiguously using both monochromatic and broadband light. When imaging in
broadband light, we can take advantage of the wavelength-dependent signature in the Fourier phase to extend
the capture range beyond the half a wave restriction imposed by all direct interferometric measurements.

Simulations were run to test the performance for two different cases. First, a pupil mask was inserted into the
science instrument, and K-band images were produced. From 1 s integrations, we can measure segment piston
down to 40 nm with an mK = 17 star using the narrowband algorithm. The broadband algorithm was effective
for stars as faint as mK = 14. Fainter stars can be used if the integration time is increased. The second case
involved a second channel sensor operating behind the PWFS. The purpose of the sensor is to detect jumps by
an integer number of waves in the segment piston estimates. Running at 10Hz and with only 10% of the light,



we can measure these jumps with an mI = 14 star using narrowband light and the narrowband algorithm, or
broadband light and the broadband algorithm.
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