Skip to main content
eScholarship
Open Access Publications from the University of California

Plasmons in graphene moiré superlattices

  • Author(s): Ni, GX
  • Wang, H
  • Wu, JS
  • Fei, Z
  • Goldflam, MD
  • Keilmann, F
  • Özyilmaz, B
  • Castro Neto, AH
  • Xie, XM
  • Fogler, MM
  • Basov, DN
  • et al.

Published Web Location

https://doi.org/10.1038/nmat4425
Abstract

© 2015 Macmillan Publishers Limited. All rights reserved. Moiré patterns are periodic superlattice structures that appear when two crystals with a minor lattice mismatch are superimposed. A prominent recent example is that of monolayer graphene placed on a crystal of hexagonal boron nitride. As a result of the moiré pattern superlattice created by this stacking, the electronic band structure of graphene is radically altered, acquiring satellite sub-Dirac cones at the superlattice zone boundaries. To probe the dynamical response of the moiré graphene, we use infrared (IR) nano-imaging to explore propagation of surface plasmons, collective oscillations of electrons coupled to IR light. We show that interband transitions associated with the superlattice mini-bands in concert with free electrons in the Dirac bands produce two additive contributions to composite IR plasmons in graphene moiré superstructures. This novel form of collective modes is likely to be generic to other forms of moiré-forming superlattices, including van der Waals heterostructures.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View