Skip to main content
eScholarship
Open Access Publications from the University of California

Cooperative loss of RAS feedback regulation drives myeloid leukemogenesis

  • Author(s): Zhao, Z
  • Chen, CC
  • Rillahan, CD
  • Shen, R
  • Kitzing, T
  • Mcnerney, ME
  • Diaz-Flores, E
  • Zuber, J
  • Shannon, K
  • Le Beau, MM
  • Spector, MS
  • Kogan, SC
  • Lowe, SW
  • et al.

Published Web Location

https://doi.org/10.1038/ng.3251
No data is associated with this publication.
Abstract

© 2015 Nature America, Inc. RAS network activation is common in human cancers, and in acute myeloid leukemia (AML) this activation is achieved mainly through gain-of-function mutations in KRAS, NRAS or the receptor tyrosine kinase FLT3. We show that in mice, premalignant myeloid cells harboring a Kras G12D allele retained low levels of Ras signaling owing to negative feedback involving Spry4 that prevented transformation. In humans, SPRY4 is located on chromosome 5q, a region affected by large heterozygous deletions that are associated with aggressive disease in which gain-of-function mutations in the RAS pathway are rare. These 5q deletions often co-occur with chromosome 17 alterations involving the deletion of NF1 (another RAS negative regulator) and TP53. Accordingly, combined suppression of Spry4, Nf1 and p53 produces high levels of Ras signaling and drives AML in mice. Thus, SPRY4 is a tumor suppressor at 5q whose disruption contributes to a lethal AML subtype that appears to acquire RAS pathway activation through a loss of negative regulators.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content

This item is under embargo until December 31, 2999.