Skip to main content
Download PDF
- Main
Quorum-based model learning on a blockchain hierarchical clinical research network using smart contracts
Published Web Location
https://doi.org/10.1016/j.ijmedinf.2022.104924Abstract
Background
Collaborative privacy-preserving modeling across several healthcare institutions allows for the construction of more generalizable predictive models while protecting patient privacy.Objective
We aim at addressing the site availability issue on a hierarchical network by designing an immutable/transparent/source-verifiable quorum mechanism.Methods
We developed an approach to combine a hierarchical learning algorithm, a novel Proof-of-Quorum (PoQ) consensus protocol, and a design of blockchain smart contracts. We constructed QuorumChain as an example and evaluated the scenarios of site-unavailability during the initialization and/or iteration phases of the modeling process on three healthcare/genomic datasets.Results
When one or more sites would become unavailable, HierarchicalChain could not function, whereas QuorumChain improved predictive correctness significantly (the full Area Under the receiver operating characteristic Curve, or AUC, improved from 0.068 to 0.441, all with p-values < 0.001).Conclusion
By constructing a quorum to continue the modeling process, QuorumChain possesses the capability to tackle the situation of sites being unavailable. It inherits the capability of learning on network-of-networks, improves learning continuity, and provides data/software immutability, transparency, and provenance, which can be important in expediting clinical research.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%