Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Optoelectronic and Excitonic Properties of Oligoacenes: Substantial Improvements from Range-Separated Time-Dependent Density Functional Theory

Published Web Location

https://doi.org/10.1021/ct100529s
Abstract

The optoelectronic and excitonic properties in a series of linear acenes (naphthalene up to heptacene) are investigated using range-separated methods within time-dependent density functional theory (TDDFT). In these rather simple systems, it is well-known that TDDFT methods using conventional hybrid functionals surprisingly fail in describing the low-lying L(a) and L(b) valence states, resulting in large, growing errors for the L(a) state and an incorrect energetic ordering as a function of molecular size. In this work, we demonstrate that the range-separated formalism largely eliminates both of these errors and also provides a consistent description of excitonic properties in these systems. We further demonstrate that reoptimizing the percentage of Hartree-Fock exchange in conventional hybrids to match wave function-based benchmark calculations still yields serious errors, and a full 100% Hartree-Fock range separation is essential for simultaneously describing both of the L(a) and L(b) transitions. From an analysis of electron-hole transition density matrices, we finally show that conventional hybrid functionals over-delocalize excitons and underestimate quasiparticle energy gaps in the acene systems. The results of our present study emphasize the importance of both a range-separated and asymptotically correct contribution of exchange in TDDFT for investigating optoelectronic and excitonic properties, even for these simple valence excitations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View