Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Synthesis, Stereochemical Analysis, and Derivatization of Myricanol Provide New Probes That Promote Autophagic Tau Clearance

Published Web Location

https://doi.org/10.1021/cb501013w
Abstract

We previously discovered that one specific scalemic preparation of myricanol (1), a constituent of Myrica cerifera (bayberry/southern wax myrtle) root bark, could lower the levels of the microtubule-associated protein tau (MAPT). The significance is that tau accumulates in a number of neurodegenerative diseases, the most common being Alzheimer's disease (AD). Herein, a new synthetic route to prepare myricanol using a suitable boronic acid pinacol ester intermediate is reported. An X-ray crystal structure of the isolated myricanol (1) was obtained and showed a co-crystal consisting of (+)-aR,11S-myricanol (2) and (-)-aS,11R-myricanol (3) coformers. Surprisingly, 3, obtained from chiral separation from 1, reduced tau levels in both cultured cells and ex vivo brain slices from a mouse model of tauopathy at reasonable mid-to-low micromolar potency, whereas 2 did not. SILAC proteomics and cell assays revealed that 3 promoted tau degradation through an autophagic mechanism, which was in contrast to that of other tau-lowering compounds previously identified by our group. During the course of structure-activity relationship (SAR) development, we prepared compound 13 by acid-catalyzed dehydration of 1. 13 had undergone an unexpected structural rearrangement through the isomyricanol substitution pattern (e.g., 16), as verified by X-ray structural analysis. Compound 13 displayed robust tau-lowering activity, and, importantly, its enantiomers reduced tau levels similarly. Therefore, the semisynthetic analogue 13 provides a foundation for further development as a tau-lowering agent without its SAR being based on chirality.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View