- Main
Phenotypic and Genotypic Characterization of Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus Strains: Relative Roles of mprF and dlt Operons
Abstract
Development of in vivo daptomycin resistance (DAP-R) among Staphylococcus aureus clinical isolates, in association with clinical treatment failures, has become a major therapeutic problem. This issue is especially relevant to methicillin-resistant S. aureus (MRSA) strains in the context of invasive endovascular infections. In the current study, we used three well-characterized and clinically-derived DAP-susceptible (DAP-S) vs. resistant (DAP-R) MRSA strain-pairs to elucidate potential genotypic mechanisms of the DAP-R phenotype. In comparison to the DAP-S parental strains, DAP-R isolates demonstrated (i) altered expression of two key determinants of net positive surface charge, either during exponential or stationary growth phases (i.e., dysregulation of dltA and mprF), (ii) a significant increase in the D-alanylated wall teichoic acid (WTA) content in DAP-R strains, reflecting DltA gain-in-function; (iii) heightened elaboration of lysinylated-phosphatidylglyderol (L-PG) in DAP-R strains, reflecting MprF gain-in-function; (iv) increased cell membrane (CM) fluidity, and (v) significantly reduced susceptibility to prototypic cationic host defense peptides of platelet and leukocyte origins. In the tested DAP-R strains, genes conferring positive surface charge were dysregulated, and their functionality altered. However, there were no correlations between relative surface positive charge or cell wall thickness and the observed DAP-R phenotype. Thus, charge repulsion mechanisms via altered surface charge may not be sufficient to explain the DAP-R outcome. Instead, changes in the compositional or biophysical order of the DAP CM target of such DAP-R strains (i.e., increased fluidity) may be essential to this phenotype. Taken together, DAP-R in S. aureus appears to involve multi-factorial and strain-specific adaptive mechanisms.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-