Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Multivariable Modeling of Biomarker Data From the Phase I Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium

Published Web Location

https://doi.org/10.1002/acr.24557
Abstract

Objective

To determine the optimal combination of imaging and biochemical biomarkers for use in the prediction of knee osteoarthritis (OA) progression.

Methods

The present study was a nested case-control trial from the Foundation of the National Institutes of Health OA Biomarkers Consortium that assessed study participants with a Kellgren/Lawrence grade of 1-3 who had complete biomarker data available (n = 539 to 550). Cases were participants' knees that had radiographic and pain progression between 24 and 48 months compared to baseline. Radiographic progression only was assessed in secondary analyses. Biomarkers (baseline and 24-month changes) that had a P value of <0.10 in univariate analysis were selected, including quantitative cartilage thickness and volume on magnetic resonance imaging (MRI), semiquantitative MRI markers, bone shape and area, quantitative meniscal volume, radiographic progression (trabecular bone texture [TBT]), and serum and/or urine biochemical markers. Multivariable logistic regression models were built using 3 different stepwise selection methods (complex models versus parsimonious models).

Results

Among baseline biomarkers, the number of locations affected by osteophytes (semiquantitative), quantitative central medial femoral and central lateral femoral cartilage thickness, patellar bone shape, and semiquantitative Hoffa-synovitis predicted OA progression in most models (C statistic 0.641-0.671). In most models, 24-month changes in semiquantitative MRI markers (effusion-synovitis, meniscal morphologic changes, and cartilage damage), quantitative central medial femoral cartilage thickness, quantitative medial tibial cartilage volume, quantitative lateral patellofemoral bone area, horizontal TBT (intercept term), and urine N-telopeptide of type I collagen predicted OA progression (C statistic 0.680-0.724). A different combination of imaging and biochemical biomarkers (baseline and 24-month change) predicted radiographic progression only, which had a higher C statistic of 0.716-0.832.

Conclusion

The present study highlights the combination of biomarkers with potential prognostic utility in OA disease-modifying trials. Properly qualified, these biomarkers could be used to enrich future trials with participants likely to experience progression of knee OA.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View