Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration.

  • Author(s): Franzmeier, Nicolai;
  • Suárez-Calvet, M;
  • Frontzkowski, Lukas;
  • Moore, Annah;
  • Hohman, Timothy J;
  • Morenas-Rodriguez, Estrella;
  • Nuscher, Brigitte;
  • Shaw, Leslie;
  • Trojanowski, John Q;
  • Dichgans, Martin;
  • Kleinberger, Gernot;
  • Haass, Christian;
  • Ewers, Michael;
  • Alzheimer’s Disease Neuroimaging Initiative (ADNI)
  • et al.
Abstract

Background

The Apolipoprotein E ε4 allele (i.e. ApoE4) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). TREM2 (i.e. Triggering receptor expressed on myeloid cells 2) is a microglial transmembrane protein brain that plays a central role in microglia activation in response to AD brain pathologies. Whether higher TREM2-related microglia activity modulates the risk to develop clinical AD is an open question. Thus, the aim of the current study was to assess whether higher sTREM2 attenuates the effects of ApoE4-effects on future cognitive decline and neurodegeneration.

Methods

We included 708 subjects ranging from cognitively normal (CN, n = 221) to mild cognitive impairment (MCI, n = 414) and AD dementia (n = 73) from the Alzheimer's disease Neuroimaging Initiative. We used linear regression to test the interaction between ApoE4-carriage by CSF-assessed sTREM2 levels as a predictor of longitudinally assessed cognitive decline and MRI-assessed changes in hippocampal volume changes (mean follow-up of 4 years, range of 1.7-7 years).

Results

Across the entire sample, we found that higher CSF sTREM2 at baseline was associated with attenuated effects of ApoE4-carriage (i.e. sTREM2 x ApoE4 interaction) on longitudinal global cognitive (p = 0.001, Cohen's f2 = 0.137) and memory decline (p = 0.006, Cohen's f2 = 0.104) as well as longitudinally assessed hippocampal atrophy (p = 0.046, Cohen's f2 = 0.089), independent of CSF markers of primary AD pathology (i.e. Aβ1-42, p-tau181). While overall effects of sTREM2 were small, exploratory subanalyses stratified by diagnostic groups showed that beneficial effects of sTREM2 were pronounced in the MCI group.

Conclusion

Our results suggest that a higher CSF sTREM2 levels are associated with attenuated ApoE4-related risk for future cognitive decline and AD-typical neurodegeneration. These findings provide further evidence that TREM2 may be protective against the development of AD.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View