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Abstract

Computational and Experimental Investigations of the Principles of Eukaryotic

Transcriptional Regulation Before, During, and After Open Complex Formation

By

Matthew D. Davis

Doctor of Philosophy in Molecular and Cell Biology

With Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Michael Eisen, Chair

In this work, I describe my doctoral work studying the regulation of transcription
with both computational and experimental methods before, during, and after
recruitment of RNA Polymerase II and the formation of the open complex at gene
promoters. This works spans investigation of the combinatorial binding of sequence
specific distal enhancer binding proteins in the developing fly embryo the role of the
yeast AAA-ATPase YTA7 in reorganizing the nucleosome positioning at the highly
transcribed loci, and the role of the AFF scaffold-associated members of the human
super elongation complex.



This work is dedicated to the relationships with friends, family, and other dear
persons, in sickness and in health, that have weathered my selfish neglect in pursuit
of these studies, but especially to the ones that did not.



[ would like to acknowledge the following individuals for providing a collection of
guidance, helpful hands, and fruitful discussions in recent years:

Tom Alber, Eileen Bell, Mark Biggin, Rachel Brem, Colin Brown, Seemay Chou,
Charles Denby, Sandrine Dudoit, Mike Eisen, Sarah Ewald, Malik Francis, James
Fraser, Aaron Hardin, Emily Hare, Melissa Harrison, Tommy Kaplan, Terry Lang,
Xiao-Yong Li, Laura Lombardi, Susan Lott, Rich Lusk, Edward Marcotte, Andy Mehle,
Nipam Patel, Brant Peterson, Dan Richter, Matt Taliaferro, Jacqueline Villalta, Oh-
Kyu Yoon, and many other members of the Eisen Lab, the Department of Molecular
and Cell Biology, and the community of the University of California.



“In the last five years we are learning to do molecular genetics directly by sequencing
the DNA. Sanger, and these people, who show how you actually sequence the DNA and
find the base change. Whereas the attempts to use genetics could be interpreted as just
cheap ways of trying to sequence the DNA.”

Sydney Brenner
February, 19761
Introduction
Transcriptional Regulators Decipher the Animal Body Plan Encoded in Genomic DNA

The blueprints for all metabolic products of living cells, including nucleic acid,
protein, fats, sugars, are all ultimately encoded in DNA. The genomes of living
organisms encode not just the information for the construction of these metabolic
products, but also the information for the timing and ordering of production,
organization, and decay of these molecules that underlie the differentiation of cell
types and development of organismal body plans. The flow of information in living
systems thus is from DNA to metabolic intermediates such as messenger RNA to
building blocks of cells and tissues to fully developed whole organisms. It is a central
scientific challenge to understand how this information is organized to constitute
living beings. The elucidation of the genetic code made clear how the information
was immediately organized?#4, but higher-order organization of the information for
gene expression, molecular half-life, and post-translational modification is not
directly encoded. Turing noted that through simple diffusion-reaction mechanisms,
a process of cell fate restriction encoded in the genetic body plan of animals could be
parsed throughout development®. With the development of molecular biology and
eventually the direct sequencing of DNA, great inroads were made in understanding
this flow of information, but not until the end of the 1990s were scientists first able
to characterize and analyze the content of an entire animal genome®.

The era of eukaryotic genome sequences began with the completion of the yeast
genome sequence by an international consortium in 19967. Roughly ten years later,
the list of available eukaryotic genome sequences had expanded to include the
model organisms of worm, fly, and mouse®8°, as well as the human genome10.
Surprisingly, the analysis of the human genome found far fewer genes encoded than
was expected based on estimates extrapolated from other organisms. For example,
the genome of C. elegans contains roughly as many genes as the human genome,
though the two organisms differ by roughly nine orders of magnitude in cell number
per individual. The question of the origin of metazoan organismal complexity cannot
be answered simply by content of the genes in the genome, but perhaps it can be
explained by the combinations in which those genes are used to produce different
cell types, tissues, and organs over the course of the developmental plan of an
organism!1-13, The yeast genome harbors approximately 6,000 open reading frames
comprising 70% of the nucleotide sequence of the genome, but the coding sequence
of the human genome comprises only 1.2% of the complete nucleotide sequencel,



consistent with the notion that non-coding sequence underlies organismal
complexity. This also suggests that the complexity of the organism scales not with
genome size, but with ability of the genome to generate combinations of gene
expression that result in diverse cellular outcomes.

Following the completion of closely related genome sequences?15-19, early estimates
of the proportion of regulatory elements in model genomes were made by
computationally assessing conservation of non-coding elements across related
genomes. Comparative genomics led the way in identifying regulatory elements on a
genomic scale, though these methods did little to reveal the mechanisms of
regulation?921, Even if conserved regulatory regions are responsible for the
derivation of a cell type or tissue layer, sequence conservation methods cannot
readily determine at which stage of development the region is active nor identify the
target genes at this stage. In cases where population genetic samples are available
and sufficient variance exists in the activity of the regulatory elements, association
studies can demonstrate an association with phenotypes and their underlying
genotypes regulated by these elements?2-30, Again, the question of which genes and
which developmental stage are key is not readily answered. However, these
methods are complemented by genomic molecular assays for the discovery of
functional elements including ChIP-chip3132, ChIP-Seq33, DNasel Hypersenstivity34,
and Hi-C353¢ which can be used to discover the stage of activity, and in many cases
the target genes of interest.

Mechanisms of Transcriptional Regulation

The first advances in understanding the regulation of gene expression came with
Jacob and Monod’s dissection of the lac operon by induction and inhibition37, and
over fifty years later, transcriptional regulation remains a field of active discovery.
Yeast genetics identified many transcriptional regulators of metabolism including
the cell cycle3 and reproductive pathways3°. Developmental genetics linked the role
of homeotic factors and morphogens to transcription0-44, which facilitated our
understanding of combinatorial regulation of gene expression in animals by distal
transcriptional enhancers#>. Biochemists purified and characterized the DNA
binding domains and identified the components of the RNA Polymerase II basal
transcription machinery#t. More recently, genomic studies of RNA Pol Il localization
have revealed pervasive pausing as a critical step in gene expression47-50, and
characterizations of the regulation of elongation, persistence, and transcriptional
rate have all become possible with the advent of high-throughput sequencing
methods>152, Gene regulation also takes place at the level of RNA stability>3-56,
translational efficiency>7-5%, and the post-translational modifications of proteins and
their stability, but transcriptional regulation is theoretically and empirically the
principally important domain of gene regulation®%61. The modes of transcriptional
regulation fall into three sets of complementary factors and processes: 1)
chromatin accessibility and remodeling, 2) distal enhancer binding factors and the
recruitment of the basal RNA Polymerase II transcriptional machinery to form the
open complex, and 3) RNA Polymerase Il elongation and persistence.



Genomic characterization of histone modifications and nucleosome positioning
revealed enrichment of histone variants at the sites of active transcription®2. Most
notable is the presence of the histone H2A variant H2A.63Z, which is often enriched
at the +1 or -1 nucleosome position relative to the transcription start site (TSS). Itis
thought that this non-canonical histone variant is less tightly associated with the
DNA itself, and is more easily evicted by histone remodeling proteins. One such
mechanism is the recruitment of a histone acetyltransferase (HAT)%*. For example,
pCAF, a human HAT, can be recruited by the TATA-binding protein (TBP) in
complex with either TATA or SAGA box proteins®. Another is the use of ATP
hydrolyzing enzymes such as the SWI/SNF complex®®. These proteins use the energy
from ATP hydrolysis to slide nucleosomes and ensure proper spacing, but can also
act to expel nucleosomes, facilitating access by the basal transcriptional machinery.
In addition to the role of chromatin in facilitating or encumbering access to the DNA
by transcription factors and RNA Polymerase II, chromatin modifications mark
different types of regions within coding regions as well®2. During the course of
active transcription, nucleosomes remain associated with the transcribed DNA, and
must handled by the transcriptional machinery. The mechanisms of these
interactions are poorly understood, but one role is for AAA-ATPases to transiently
dissociate the nucleosomes from the DNA, allowing ready passage of the polymerase
complex through the locus.

While existing chromatin state influences transcriptional initiation and efficacy, the
existence of any sequence-specific signal directing the positioning of
nucleosome®’.68 in the genome has been controversial®®-71. There appear to be
sequences that favor the bending of DNA required for nucleosome wrapping, but
whether this signal is sufficient to position the nucleosomes in the chromatin amid
the much stronger sequence signals encoding the recognition sequences for DNA
binding domains of transcription factors is unclear. What is clear is that sequence
specific DNA binding domains are capable of interpreting the probabilistic code of
regulatory sequence in the genome.

Both promoter proximal and distal enhancer binding transcription factors rely on
sequence specific binding domains to recognize their binding sites.”2-7> Depending
on the binding domain, these sequences are typically less than a dozen base pairs
long, although oligomerization of cooperating factors can increase the length of the
binding site’6-78. These sites are not deterministically bound, but rather
probabilistically and transiently occupied by their binding domains. In vitro assays
of binding kinetics suggest that DNA binding domains bind their ligands in a
cooperative manner in accordance with Hill kinetics, with the Hill coefficient varying
for each pair of DNA binding domain and ligand”°-82. The probability of binding is
thus a function of both the affinity of the sequence for the DNA binding domain and
the concentration of the factor present in vitro. The primary sequence affinity of
DNA binding domains can be determined in vitro by selection assays, as well by
other methods described below. The compendium of the selected bound sequences
can be convolved into a probabilistic weight matrix (PWM)83-85, which can be shown
to have strong power to predict the probabilistic binding kinetics of factors both



empirically and by principles of information theory. These values, however, are
most applicable in vitro, as many other forces influence binding affinity in vivo.

The concentration of the factor in vivo has often been presumed to be in radical
excess of the concentration of DNA binding domains, suggesting that when a
transcription factor is induced, its sites are generally occupied®®. Reason to doubt
this assumption issues from the observation that transcription factor concentration
varies from tissue to tissue in a continuous fashion, and from recent work studying
the kinetics of in vivo binding of glucocorticoid receptor8’-89. The central focus of the
third chapter of this work is an in vivo titration experiment that aims to inform the
relationship between the continuum of transcription factor concentrations in the fly
embryo and binding of transcription factors to developmental distal enhancer
regions.

In addition to chromatin status, primary sequence affinity, and factor concentration,
the availability of transcriptional cofactors can also influence the binding of a
transcription factor to its recognition sequence. In many cases, such as the dimeric
leucine zipper family, the transcription factor must oligomerize in order to
recognize its sequence ligand. In some cases, this is heterodimerization with other
DNA binding proteins, and in other cases, the factor can facultatively oligomerize
with cofactors that do not binding DNA. In some cases, such as has been studied in
atomic detail with hox proteins and their cofactors®%-94, the binding recognition or
biophysical mechanism of binding is altered. In yet other cases, the cofator is
required for stabilization or association with a larger complex of transcriptional
proteins?5.6,

The mechanisms of transcriptional activation are complex, but generally
understood. Upon binding of an activator protein to a distal enhancer region,
provided there is not sufficient repressive activity present, the activator will either
directly or via a co-factor, bind to the basal transcriptional machinery, often the
mediator complex, which is in turn competent to recruit and stabilize the basal
sequence specific transcription factors such as TFIID and RNA Polymerase I1°7.
Mechanisms of repression can be roughly characterized as any molecular process
that disrupts the process of activation. This can involve direct competition for
recognition sequences shared by activators and their antagonistic repressors?8-100,
Repressors may also form DNA loops that exclude the region bound by an activator,
sterically interfering with the activation of the basal complex. Repression may also
occur in the presence of excess activator by a mechanism called “squelching” where
the excess activator sequesters necessary cofactors and outcompetes the activator
molecules positioned at the proper regulatory regions8!. Many other models for
repression should be considered plausible, though the evidence the relative efficacy
of each model of repression is scarce. In sum, repression is interference with the
course of activation.

The phenomenon of paused polymerase at the Drosophila HSP70 gene was first
described in 1992101 and genomic localization data for RNA Polymerase II has since
shown pervasive RNA Polymerase Il pausing in several models!92. The function of



paused polymerase is still a matter for study, but pausing is relieved in the course of
transcriptional elongation. The phosphorylation of the Ser2 residues of repeats in
the C-terminal tail of RNA Polymerase Il is necessary for elongation93. This
phosphorylation is catalyzed by the CDK9 kinasel%4. The context of this regulatory
step is still an active pursuit of research, but recent work suggests that the CDK9/P-
Tefb complex is recruited by the bromo-domain protein Brd4195106, These proteins
are scaffolded at many loci by one of the AFF scaffolds of the Super Elongation
Complex (SEC), which are also known to scaffold a number of other factors that are
positively associated with active and efficient transcript elongation!97-110, Other
well-studied factors such as the transcription factor c-Myc have also been associated
with efficient phosphorylation of RNA Polymerase II, and many of the genes in this
process were first identified for their roles in tumorigenesis, reflective of their
ability to broadly influence transcription of many genes.

These intertwined molecular processes together constitute the pre-initiation,
stabilization, and elongation phases of eukaryotic transcriptional regulation. The
recognition of gene expression by combinatorial binding to distal enhancer
sequences is a pervasive feature of metazoan gene expression, as it is the basis for
tissue differentiation during development. The canon of comparative work since the
discovery of the homeotic genes also suggests that the evolution of gene expression
acts largely through selection on the cis-regulatory logic of distal enhancer
sequences!!29, though many cases of evolution in the coding sequences of proteins
active in interpreting the regulation of genes have been illustrated!11-113. More
recently, there is evidence accumulating for cell type specific cis-regulation at the
basal promoter!# and in the transcriptional elongation complex, and these
processes may yet prove powerful to effect cellular differentiation, especially early
in development.

Methods

This section describes and reviews the basic assumptions of the methods used to
generate and analyze data relevant to the research described in subsequent
chapters.

Biochemical and Molecular Methods

The inference of binding sites recognized by sequence specific transcription factors
has greatly facilitated our understanding of higher order organization of regulatory
information in eukaryotes. Binding motifs can be inferred from both in vitro and in
vivo data. DNA footprinting is a protection assay where a pool of sequence, typically
amplified from a genomic region of interest, is incubated with a transcription factor
and the DNA is digested!!>. The protected fragments are detected with a gel assay,
and individual protected sequences can be inferred. This is similar in principle to
the DNA gel-shift, which is used to illustrate binding and estimate the affinity of
particular DNA ligands for their binding domains. These two methods proved very
powerful and convolutions of the sequences inferred from footprinting have been
used to build PWMs with high predictive power. However, these methods are



relatively low-throughput, and are limited by the pool of sequences included in the
binding pool. The SELEX assay is a selective enrichment binding assay that enriches
high-affinity sequences by iterative selection in vitro116-118, This method has the
advantage of inputting large, unbiased sequence pools for selection, and thus can
infer more complex and accurate PWMs. These methods typically assay the binding
of only one protein, though in theory mixtures of protein or extract could be used.
Bacterial one-hybrid 11%assays and protein-binding microarrays2? also provide
high-throughput methods for binding site enrichment, but none of the data in the
work described here were derived from these methods. Finally, ChIP-chip3132121
and ChIP-Seq are in vivo methods for binding site identification. The collection of
bound regions in a ChIP sample, especially when conditioned on the binding to or
near to known functional regions, can allow inference of the actual in vivo binding
sites and PWMs can be constructed from the convolution of these sequences.

Chromatin immunopurification (ChIP) requires the generation of a factor-specific
primary antibody. The spurious cross-recognition of paralogous binding domains is
a concern, and to this end multiple antibodies can be generated to regions without
high conservation and their results compared. The antibodies used in Chapter 3, for
example, were generated with constructs previously validated to give good
correspondence between immunopurification of both N-terminal and C-terminal
segments of the studied factors'?2. Even with cross-validated antibodies, an
orthogonal dataset such as binding of a cofactor or presence of the known binding
sites in the ChIP regions can be reassuring, as ChIP assays have a high false-positive
rate. Statistically, this can be controlled by establishing a false discovery rate for the
dataset and considering each data point accordingly!?3. For reasons that are well
understood, open chromatin regions, typically near highly expressed genes, are
commonly enriched in likely false positive regions. Whether or not the binding of
factors to these regions is genuine or an artifact of crosslinking or purification is
difficult to discern, but some effort can be taken to consider a negative control
sample. For example, in the case of tagged proteins, a no-tag ChIP experiment can be
performed and used as a background dataset for the determining enrichment. This
approach was taken in with the yeast ChIP samples in Chapter 4. Another form of
control is to ChIP a sequence-specific factor with orthogonal function, an approach
employed in Chapter 4 by comparing the binding of the chromatin insulator CTCF as
a control for the members of the SEC.

Data generated by high-throughput sequencing methods were used throughout this
work. In each case, the data were generated with the [llumina short-read sequencing
platform. The ChIP-sequencing protocol developed for the work in Chapter 3
required extensive optimization of the collection and isolation of chromatin, and
due to the low input concentrations, the standard Illumina protocol was also
optimized. In some cases, carrier sample was used to facilitate proportionally high
recovery. Generally, ChIP-sequencing samples of human chromatin required over 20
million reads for reliable data, whereas fly samples generated good results with as
few as 2.8 million reads, and yeast samples required far less. For RNA sequencing
used to profile gene expression of human cell culture and single fly embryos, read



depth continued to improve signal and resolution of the data past 30 million reads
per sample.

Genetics and Developmental Methods

The Kruppel mutant flies generated for use in Chapter 3 took advantage of the phi-
C31 integrase system!24, which precisely inserts transgenic fragments into
engineered landing sites. This avoids inconsistent expression from position effect,
and according to RNA-seq profiling of the mutant line, provided nearly precise over-
expression of the inserted locus.

In situ hybridization and protein antibody staining were used in Chapters 2 and 3 to
assess the localization of both mRNA and transcription factor proteins. These
methods have the advantage of providing cellular resolution in the localization and
quantification of the gene products measured. However, the quantification is
relative within the samples. In the case of the stains collected in this work, as
opposed to the data generated by the Berkeley Drosophila Transcription Network
Project (BDTNP) and analyzed here, mixed samples were pooled and stained
together, using the apparent molecular phenotypes of reference patterns to identify
the sample variants after staining. In this manner, experimental variation was
minimized and the relative values in each line given high confidence.

Computational Methods

The methods for binding site identification and calculation of primary sequence
affinity used here are not novel in theory nor practice83125, The identification of
binding sites used the highest information PWM available for the factor of interest.
For example, for identifying BCD sites and calculating regional sequence affinity, a
high-quality PWM derived from DNA footprinting data was used!?¢, but for KR, a
higher-information matrix derived from SELEX datal?2 was preferred. More
sophisticated models employ a thermodynamic model of competition or
cooperation of other chromatin proteins or states, such as the binding sites of
known cofactors or profiles of chromatin accessibility27.128 but this work employs a
simpler additive model of sequence affinity.

In Chapter 2, [ used Classification and Regression Trees (CART)!2° to partition the
embryo into regions that are similar with respect the expression of over 100 factors,
while integrating genomic binding profiles for relevant transcription factors as
priors. Other such efforts to predict gene expression logic from expression and
binding data have been taken one of two different approaches. Dynamical systems
of coupled equations have been constructed, simulated, and optimized chiefly by
John Reinitz and colleagues!3%131. These models have the advantage of explicitly
addressing the known phenomena of non-linearities such as feed-back and feed-
forward loops. However, these models inherently explore a vast landscape of
possible regulatory relationships, and must be limited by assumptions of biological
architecture in an effort to avoid entrapment in local minima of biological
irrelevance. A second class of models integrates sequence affinity, binding, and



coexpression into a single thermodynamic model, and the parameters of which can
be trained against observed data. These models have yielded biologically relevant
insights, such as the predictive power of DNase I accessibility as a marker of open
chromatin!?’ and support for short-range repression as the predominant mode of
repression in fly segmentation network!?8. However, these models too assume
biological architecture, for example which factors are capable of activation or
repression, which I aimed to infer.

Summary

In the following chapters, I describe my work investigating the regulation of
transcription by combinatorial binding of sequence specific distal enhancer binding
proteins in the developing fly embryo, as well as the role of the yeast AAA-ATPase
YTA7 in reorganizing the nucleosome positioning at the highly transcribed loci at
which it facilitates expression, and the role of the AFF scaffold-associated members
of the human super elongation complex (SEC) in facilitating transcript elongation
after the phosphoactivation of the C-terminal tail of RNA Polymerase I

In Chapter 2, [ infer the roles of maternal and gap factors in the expression of
Drosophila patterning genes using CART to integrate genomic binding and spatially-
resolved co-expression data in the embryo. I show evidence that gap patterns are
readily partitioned and logic can be inferred that is consistent with the complex
roles of morphogen concentration, cross-repression, temporal dynamics, and
context-dependent roles of factors as activator and repressor. However, due in part
to the limitations of my model to describe autoregulation and to the significant
autocorrelation in the interdigitated patterns of the pair-rule genes, these decision
tree models fail to make compelling predictions of pair-rule regulatory logic. I offer
in conclusion from this work that in addition to pervasive autoregulation in the
segmentation network, a finer granularity in the definition of cis-regulatory element
would benefit the development of future models.

In Chapter 3, [ address the role of transcription factor concentration in vivo by
assaying genomic binding and expression levels alongside the patterning of
canonical targets in two dosage series of the transcription factors bicoid and
Kruppel. I show that there is pervasive sensitivity to dosage of these factors at the
level of genomic binding and expression of nearby genes. Further, dosage sensitivity
is underwritten by primary sequence affinity, and suggests a model of in vivo
transcription where factor concentration is not in radical excess of binding sites.
However, the model suggests that many functional sites are effectively saturated,
perhaps due to forces beyond primary sequence affinity.

Finally, in Chapter 4, I briefly describe vignettes of my work in two collaborations.
By integrating genomic binding, expression, and MNase sensitivity data, my
collaborators and I have established a wide role for the AAA-ATPase YTA7 in
regulating nucleosome spacing and positioning at highly expressed loci in budding
yeast. This regulation at the level of chromatin remodeling and expulsion of histone
facilitates active transcription after the recruitment of RNA Polymerase II to the



promoter of the gene. And in my second collaboration, I have integrated genomic
localization data for the members of the AFF scaffold-associated SEC with RNA-seq
data comparing conditions of wild-type and knock-down expression of these factors
in human HeLa cells. This work studying the regulation of transcription during and
after the elongation of RNA Polymerase II suggests that another level of
combinatorial regulation exists downstream of open complex formation, and that
some, but not all, of the members of the SEC may travel past the first exon of highly
transcribed loci to facilitate efficient transcript elongation.

In summary, I provide a study of transcriptional regulation before, during, and after
recruitment of RNA Polymerase Il and the formation of the open promoter complex.
This ranges a contemporary survey of transcriptional biology that leaves me with
several conclusions. It is clear that appropriate models for combinatorial regulation
at distal enhancers need to allow for multivariate cooperativity of transcription
factors themselves and the genomic context in which they operate. These models
should be as open as possible, placing constraint only where there is strong
evidence to do so. For example, factor concentration should not be assumed to have
a binary nor monotonic role in the activity of a factor. In addition to the complexities
of RNA Polymerase Il recruitment and open complex formation, the genomic context
of the transcribed locus, along with the proteins that guide and regulate the
processes of elongation and termination, should also be considered in these models.
Contemporary methods such as global run-on sequencing (GRO-Seq)!32 and nascent
transcript sequencing (NET-Seq)>1°2 provide additional tools with which to study
these mechanisms, but it is worth mentioning that the most of discoveries in each
chapter of this work have relied on modern sequencing technology leveraged to
gain insight into the complex, abstract, and unseeable mechanisms of the cell. In
recognition of this, I began this dissertation with a quotation from Sydney Brenner
regarding the inference of the genetic code and role of direct sequencing in the
prospects for future discoveries in molecular biology.



Chapter 2

Inference of Combinatorial Logic of Transcriptional Regulation in the Drosophila
Blastoderm with Classification Trees



Introduction

A foundational discovery of early molecular biology came with the discovery of the
lac operon and the induction of gene expression3’. Though the experimental system
that led the way in our nascent understanding of gene regulation required passage
of genetic material from one individual to another, it has since been established that
eukaryotic genes are coordinately expressed by a compendium of trans-acting
transcription factors. As our understanding of the organization of genes and
regulatory elements in genomes has developed through the era of molecular biology
and genomics, it has become clear that the information encoded in the primary
sequence is read by the state of this trans-acting network!2. Unlike the fundamental
genetic code, the regulatory code does not have a simple grammar, but instead
integrates probabilistic regulatory logic contained in regions positioned in cis to the
loci under control.

By encoding short sequences recognized by the DNA binding domains of
transcription factors, cis-regulatory modules (CRMs) direct the recruitment of
activating and repressing domains, which in turn associate with basal transcription
machinery to determine the transcriptional state of the target locus. In yeast, this
regulatory logic is encoded in short promoter regions near the transcription start
site of the gene’3.133, but in metazoans, distal CRMs direct expression of the locus,
often from distances greater than the length of the gene itself and with much more
sophisticated mechanics®’. This complexity increases the field of possible
biophysical mechanisms for gene regulation. However, only a few examples of such
regulation are well-documented34137, and direct observation of these mechanisms
remains an active pursuit!38. Whereas the regulatory logic in microbes like yeast can
be predicted by inferring the roles of trans-acting factors as activators or
repressors!3?, the more complex architecture of metazoan CRMs presents a
challenge for inference and prediction. Additionally, though yeast exhibits different
trans-acting network properties throughout the cell cycle, between the mating
types, and in varying media environments, metazoans face a fundamentally more
complex task in combinatorial gene regulation. From a set of isogenic pluripotent
cells, metazoans must derive various cell and tissue types, precisely arranged in
space and time to form coordinated organs and limbs that function as one body.
Thus, heterogenous isogenic microbial populations differ fundamentally from
metazoan cells as they lack the non-autonomous influence metazoan cells assert on
one another in the same body.

The blastoderm of the fruit fly Drosophila melanogaster is the most established
model system for understanding the transcriptional regulatory circuits underlying
tissue differentiation in a metazoan. Early work characterized the factors of the
trans-acting network with classical genetics, biochemistry, and molecular
biology#244135140-143 Reporter constructs identified activating sequences required
to generate a given expression pattern, and consensus binding sites could be
inferred with DNA footprinting. As measurement accuracy improved, it became



clear that there were quantitative continua of transcription factor concentrations
distributed throughout the nuclei of the blastoderm®6144. As genome sequences
became available, comparative genomic and genome-wide molecular assays brought
a more complete understanding of the architecture of CRMs and their target
genes1819122145-147 Thys, the earlier qualitative assays that facilitated our
fundamental understanding of metazoan transcriptional regulation gave way to
computational and genomic methods to study the complexity of development.

The initial conditions of this system are specified by the deposit of maternal factors
into the egg prior to fertilization, and the system of regulators then plays forward
through development. Typically, the system has been reduced to study by axis of
development, either anterior-posterior or dorsal-ventral, or alternatively by
grouping the factors according to their time of onset as maternal, gap, pair-rule, or
segmentation factors148-151, Here, [ integrate datasets produced by the Berkeley
Drosophila Transcription Network Project (BDTNP)122.146152-154 generated with the
goal of considering the full complexity of the blastoderm transcriptional network.

The BDTNP gene expression atlas contains quantitative expression data for over
100 blastoderm factors, including a nearly complete set of the transcription factors
expressed at this stage in development. The atlas spans seven intermediate time
points throughout the 140 minutes prior to gastrulation, capturing the quantitative
variation in the concentration of maternal, gap, pair-rule, and segmentation factors
(Figure 1). The data are collected in three physical dimensions with a two-photon
confocal microscope, and registered into the atlas of 6,078 nuclei containing both
protein and mRNA localization datal>2-154, The registration of thousands of embryos
into a single atlas allows for relative quantitative comparison across the nuclei and
between factors and time points and thus is the only dataset of its kind.

In addition to the gene expression atlas, the BDTNP also generated genomic binding
data for 21 transcription factors in the blastoderm. These 21 include maternal, gap,
pair-rule, and ubiquitous factors, as well as representing AP and DV axis
determinants. These data, especially in combination with the genome sequences of
12 Drosophila species generated by the Berkeley Drosophila Genome Project!?,
provide information about which factors are able to regulate which target loci in the
genome. However, owing to both the false positive rate inherent to chromatin IP
data and to the prevalence of real biophysical, but functionally irrelevant
opportunistic binding of transcription factors!??, these data alone are insufficient to
allow insightful modeling of the regulatory network.

Here, I leverage the substantial collection of data generated by the BDTNP to infer
regulatory relationships in the Drosophila blastoderm. Using the rich matrix of
mRNA and protein localization data from the gene expression atlas, while
considering the genome-wide ChIP-chip binding data, I show that the blastoderm
can be readily partitioned into contiguous segments that share a regulatory
architecture with respect to the expression of a given target gene. The early network
of maternal and gap gene expression is well-described by this method, recapturing
existing regulatory knowledge. Additionally, | was able to predict previously



undescribed time-dynamic regulatory relationships between maternal, gap, and
pair-rule gene products, generating specific and testable hypotheses about gene
regulation. While the algorithm developed is also able to describe portions of the
later pair-rule gene expression patterns, these patterns present challenges to the
method which themselves call into question our theoretical conception of CRM
structure and function.

Results

Classification Trees Accurately Describe Known Regulatory Relationships of Maternal
and Gap Genes

The organizational task solved by the developmental plan encoded in the genome of
the fly is to differentiate similar cell types in contiguous sections of the embryo prior
to gastrulation. If the fundamental cell fates have not been specified by the
beginning of gastrulation, then the layers of endoderm, mesoderm, and ectoderm
cannot be properly specified. To the extent that a given gene product determines
these fates, then cells similar in the concentration of that factor are similar to each
other. Or as formulated here, each cell contains a vector of gene product
concentrations, and tissue similarity is determined by the overall similarity of these
vectors. However, some factors are more determinative than others given the
context of their co-expression with other factors. The task is then to understand
how each gene product is distributed across the nuclei of the embryos cells as a
function of that gene’s regulators. In this view, we can conditionally dissect the
embryo into groups of cells that are similar with respect to the concentration of a
given factor, and then ask how the concentrations of given regulators covary, if at
all. To this end, each factor concentration vector in the gene expression atlas was
partitioned with a classification tree!2? into similar groups of cells (see methods for
details) and the rule sets that determined the branch points of the tree were
interpreted as regulatory logic.

For each classification tree, the gene product of interest was predicted by other
factors active before and/or during the expression of the target gene. For example,
gap genes were predicted by the concentration vectors of maternal and other gap
gene products, whereas pair-rule target genes were predicted by maternal, gap, and
pair-rule concentration vectors. Additionally, the prediction vectors were excluded
from a given classification tree if the BDTNP ChIP data suggested that there was no
binding near the target gene.

The classification tree method uses a linear model to predict the target vector, and
the divides the observations in the prediction vector above and below the mean of
the target value. In this way, the data are partitioned iteratively until there is the
refinement of the residual in the linear model no longer improves, at which point
the iterations cease and the model produces a “leaf” partition of the classification
tree. If there is no structured information in the data matrix, then no branches can
be made and a null tree results. Trees with a larger number of leaves represent a
more complex conditional data space.



In classifying the nuclei of the gene expression atlas by a given pattern, the
algorithm did not produce a null tree for any target gene pattern. Rather, the
partitions of the trees fall overwhelmingly into spatially contiguous patterns of
nuclei (e.g. Figures 2-5), though there is no explicit spatial information being
considered by the algorithm. Thus, the partitioning algorithm can successfully
resolve spatial segments of the embryo with respect to a given gene product.
Further, the algorithm is sensitive to quantitative variation in both the predictor
concentration matrix and the target gene concentration vector. For example, the
early expression pattern of the gap gene hunchback is driven directly by the Bicoid
(BCD) morphogen gradient in a concentration-dependent manners>. At the
anterior of the embryo, high levels of BCD induce high hunchback expression, in the
trunk of the embryo, intermediate levels of BCD cooperate with hunchback
autoregulation to create a sharp expression border, and in the posterior of the
embryo, low levels of BCD are insufficient to induce hunchback. This morphogen
pattern has been referred to as the “French Flag” model by Wolpert!3¢. It is
accurately recaptured by the partitioning of the embryo’s hunchback pattern by
three separate levels of BCD, despite the presence of dozens of other maternal and
gap factor concentration vectors in the predictor matrix (Figure 2).

The classification trees are subject to the limitation of the data they partition, as
exhibited by the tree describing the regulatory logic for giant expression in the early
blastoderm (Figure 3). In this case, the tree correctly identifies Kruppel protein
(KR) as the principle repressor of giant in the trunk of the embryo and BCD as the
principle activator of giant in the anterior of the embryo!>’. However, the tree also
falsely attributes a repressor role to BCD in the anterior terminus of the embryo.
This owes to the fact that the expression atlas does not contain information for the
gene products of the torso locus, which are known to post-translationally modify
BCD in a way that inhibits its role as an activator, and Torso protein is localized to
the anterior terminus?®8. Thus, what is actually a lack of BCD activity in the
terminus is attributed to very high levels of BCD, falsely suggesting a repressor role.
Similarly, the atlas data for the posterior regulatory Caudal (CAD) is relatively poor
at this time stage. Since the BCD and CAD gradients oppose one another, the lack of
information in the CAD data is supplanted by the BCD data as a proxy.

Despite the imperfections of the dataset, however, the classification trees are able to
parse gene expression of both high and low complexity. In the case of the gap gene
knirps, the classification tree accurately describes the regulation of the locus in both
the anterior-posterior and dorsal-ventral system. The activation of knirps by BCD,
Hunchback (HB), and Tailless (TLL) proteins in the anterior is inhibited by the Snail
repressor (SNA) in the anterior dorsal-ventral planel5°. In the posterior of the
embryo, knirps regulation is described by repression by GT and activation by TLL.
However, the principle activator of knirps in the posterior domain is misattributed
to a negative relationship with the BCD gradient, again reflecting the weak CAD data
in the expression atlas.

A Novel Regulatory Relationship of the hunchback Locus



In the progression of the blastoderm stage, increased pattern complexity becomes
common. The hunchback pattern that begins as a single domain expressed as a
product of the BCD gradient and cooperative autoregulation resolves into three
clear expression domains by the mid-blastoderm stage. As this complexity
develops, the pair-rule genes become active regulators and the responsibilities of
regulation of each locus are distributed amongst several regulators. To further
complicate this combinatorial regulation, factors may act as either activators or
regulators depending on the context of their regulation¢0. For example, HB itself is
known to both activate and repress depending on cofactor availability and
concentration!®l. The tree models for each locus need not assume that a regulator
has a strict role as activator or repressor, but rather can infer context-specific roles
for each factor in each partition. In the mid-blastoderm hunchback tree model
(Figure 5), the tree predicts that hunchback is activated in the anterior by three
factors: BCD, Dichaete (D), and FTZ. Similarly the model predicts several repressors
of hunchback expression: Huckabein (HKB), KR, GT, and KNI. These specific
predictions are then testable by elimination of the proposed regulator and
measurement of hunchback expression. In the case of hunchback, repression by
each of the predicted repressors is documented by previous work on the gap gene
network and cross-repression between its members, as is activation by BCD162,
However, the proposed role of FTZ as an activator of hunchback expression in both
the trunk and posterior domains is a novel prediction.

Previous work dissecting the hunchback regulatory regions showed that posterior
repression was chiefly the role of HKB. The same work proposed that while BCD
was the principle activator of the anterior regulatory region, separate regulators
were responsible for driving expression in the posterior'62. The authors show that
the posterior expression can be generated in a reporter model with sequence
containing several binding sites for TLL, consistent with the early blastoderm tree
predictions. However, the authors also note that hunchback expression is clearly
more complicated than this, as evidenced by two observations: 1) in tailless mutant
embryos, the posterior hunchback stripe is still weakly expressed, and 2) the
anterior cap and stripe patterns are generated independently and the same
sequence that generates the posterior expression in a reporter construct also drives
expression of the anterior stripe, but not the anterior cap pattern. In the mid-
blastoderm tree model, FTZ is predicted to activate both in the posterior region and
the anterior stripe.

To test this prediction, I co-stained early and mid-blastoderm embryos of both ti]
and ftz genotypes with mRNA hybridization probes for the hunchback gene product
and antibodies raised against either the FTZ or TLL proteins. As found by Margolis,
et al, functioning TLL was required for proper expression of the posterior domain of
hunchback (not shown). The effects of the ftz mutation are at most quantitative
modifiers of the strength of the hunchback pattern. Nonetheless, it appears that ftz
embryos, as assessed by the absence of FTZ in the early blastoderm, generate a
similar, but delayed hunchback pattern in comparison to the wild-type embryos
(Figure 6). That is, the resolution of the anterior pattern into a cap and stripe



appears to lag in ftz embryos when embryos at a similar progression of membrane
extension are compared. Whether or not the hunchback pattern fully recovers to the
quantitative levels is unclear, but qualitatively, it appears that the hunchback
pattern does fully recover in the anterior and posterior (not shown). Thus, there is
clear evidence that identifying til as a direct regulator of hunchback expression in
the posterior, supporting the work of Margolis. The evidence for ftz is less strong,
given the lack of quantitative microscopy to confirm or dismiss the perturbation of
the eventual hunchback pattern. If the principle effect of ftz is the timing effect
shown here, it is almost certainly an indirect effect of FTZ protein activating other
factors that repress the continued activation of hunchback in these anterior regions.
While it is possible that the effects of both til and ftz are partly derived through the
trans-network, both proteins bind hunchback regulatory sequence as measured by
BDTNP ChIP-Chip data. Binding sites for both proteins are prevalent in the
regulatory sequence, suggesting that this binding is not spurious [Fig 7]. The
binding of TLL overlaps the bound regions of both BCD and FTZ, suggesting that it
can activate transcription from both enhancers. One TLL site precisely overlaps a
strong FTZ binding site, allowing the possibility that the same site codes for the
recognition of both activators at different stages development.

Challenges to Describing Pair-rule Patterns

The description of pair-rule patterns by the tree models often fails to recapture
recognized regulatory relationships. For example, the early even-skipped pattern is
more similar to a gap expression pattern, and the tree model readily recognizes the
two established activators of this pattern as HB and BCD (not shown). However, at
mid- or late-blastoderm stages, the even-skipped pattern is predicted almost entirely
by other pair-rule genes. While it is thought that the pair-rule genes do cross-
regulate each other at this stage of development, the tree model is unable to parse
the deep autocorrelation of the data in these stages. This in essence reveals two
fundamental properties of the linear model at the heart of the classification trees
that do not limit the ability to describe the earlier gap patterns. First, the model
cannot account for auto-regulatory mechanisms, such as are known to exist in ftz
auto-activation or eve auto-repression163-165. Second, the model infers structure in
the data based on covariance alone, with only the ability to use separate time points
as a proxy for causation. Thus, where there are multiple regulators all tightly
correlated over a space in the embryo, the model cannot readily discern which is
most closely related to the pattern it is trying to describe.

In an effort to limit the space for auto-correlation in these predictions, trees for the
pair-rule patterns were generated with only the maternal and gap factors used as
predictors. In this case, some aspects of even-skipped regulation are described,
including the repressive role of GT in the anterior, and some tenable hypotheses are
derived, such as a role for Dichaete as an activator in the trunk, which is supported
by binding data. This tree also depicts the interplay of the DV system, with zen
repressing the level of even-skipped expression in the DV axis. However, the tree



fails to capture many other aspects of established even-skipped regulation, such as
repression by other gap genes such as Kruppel and knirps.

Discussion

This work aims to infer regulatory logic of the embryonic transcriptional network
en masse, by simultaneous computational dissection of the embryo into similar
regions and description of the co-expression values of over one-hundred patterned
genes across several time points in those regions. The classification tree models are
able to segment the early gap expression patterns of the embryo into contiguous
and biologically meaningful partitions of the embryo. In many cases, these models
are consistent with established regulatory relationships in the early embryo. These
relationships are quantitative, allowing for inference of different roles depending on
the concentrations of regulators such as the BCD morphogen and HB, which is
known to both activate and repress in a concentration-dependent manner. Also, the
model is implicitly conditional, which allows for the factors to take on different
regulatory roles depending on the context of other factors expressed in different
partitions of cells in the embryo. For example, it is known that KNI is able to both
activate and repress depending on which cofactors are present!el.

The gap patterning models generate specific hypotheses regarding which factors act
as repressors or activators in specific partitions of the embryo. These predictions
may represent indirect interactions of the transcriptional network, though the
compendium of ChIP binding data collected by the BDTNP is considered in the
model, suggesting in the case of FTZ or TLL activation of hunchback or Dichaete
activation of even-skipped, that these regulatory relationships are direct.

In the case of hunchback patterning, the model accurately describes the earliest
activation of hunchback by the BCD morphogen, and subsequent activation and
repression relationships as the pattern develops from a simple anterior domain into
three distinct domains. These segments of the embryo are readily partitioned into
spatially contiguous hunchback expression domains by the classification trees that
describe them, and the regulatory relationships for the BCD and TLL activators, as
well as all the known repressors of hunchback expression are accurately described
in their respective roles. Additionally, the models predict a time-dynamic tradeoff of
the gap gene network to the pair-rule network as TLL activation in the posterior cap
of hunchback expression shifts to activation by FTZ. This prediction provides an
explanation to what Margolis and colleagues referred to as an “additional activity” in
their earlier dissection of the hunchback regulatory sequences, wherein expression
by the posterior enhancer of hunchback included the anterior stripe domain of
hunchback, but not the anterior cap. This expression domain is predicted to be
coordinately activated by FTZ along with the posterior cap.

Description of the later pair-rule patterns was not as successful as the description of
the gap gene patterns. The classification model depends on linear models of the
relationships between regulator and target genes, and non-linearities are
accommodated inherently by the conditional branching of the tree model. For



example, the non-linear relationship of bicoid to hunchback is accurately and readily
described by the tree model for early hunchback activation. However, higher-order
non-linearities, including cases of auto-regulatory feedback as in the case of several
pair-rule genes, present a challenge for these conditional linear models. To the
extent that factors merely covary in the transcriptional network without effecting
any regulatory impact on their covarying gene partners, the model will mistake this
mere covariation for a regulatory relationship. The model does pare away
potentially spurious relationships by considering the evidence for direct regulation
from the BDTNP ChIP datasets, but binding in these datasets does not reflect bona
fide regulation due to both high false-positive rates and the prevalence of real but
non-functional binding in the genome.

The tree models are apt to describe simpler patterns rather than the more
complicated patterns that emerge later in development, but it seems the simplicity
of the regulatory architecture, not the pattern itself, is the determinant of how
accurate the tree models are. For example, the hunchback pattern is accurately
described in three separate domains, with interdigitated patterns from many genes,
including pair-rule genes, coming between the three hunchback domains. However,
in the case of hunchback, there are two principal early regulatory elements, one for
the anterior and one for the posterior. In contrast, the even-skipped locus contains at
least five regulatory elements. In the case of the hunchback posterior enhancer,
some expression is driven at the anterior stripe, suggesting that the description of
the enhancers as anterior and posterior is a misnomer. The seven-stripe pattern of
even-skipped has been dissected such that regulation of stripes 1 and 5, stripe 2,
stripes 4 and 6, and stripes 3 and 7 are all separatel66-168, Several further
computational efforts, such as random forest sampling with prior weighting!¢® and
factor analysis for segmentation of similar regions prior to tree modeling, were
made in an attempt to computationally discover regions such as the even-skipped
stripes that are regulated by similar logic but expressed in non-contiguous patterns.
Importance sampling of the random forest indeed confirms that the trees are
making robust decisions in their classifications (data not shown), but did not yield
improvement in the description of more complex patterns.

It may be that the definitions of discrete enhancers in the even-skipped locus are a
false construct. For example, it is known that the stripe 3+7 enhancer also drives
partial expression in stripe 2, despite being thousands of base pairs from the stripe
2 enhancer. Thus, it may be that a better model for the nature of enhancers is that
gene expression is driven by a single joint model of all bases in the genome and their
ability to contribute to the activation and repression of a locus. Surely proximity is a
predictor of the most relevant bases, but further compartmentalization is a
construct most useful to explain the activities of regions that were conveniently
digested by restriction enzymes and then found to have regulatory activity. This
notion echoes the thoughts of Arnosti’s “billboard”17%.171 model for transcriptional
regulation in the embryo and seems supported by the strengths and weaknesses of
the tree models discussed here.



Though much of the information required to pattern the embryo is present in the
matrix of covarying factors and their expression across the nuclei of the embryo,
there are several sources of regulation that are not taken into account here. One
such source is the direct ability of a covarying factor to regulate its target gene. This
is accounted for with some number of our factors by the orthogonal measurement of
ChIP-chip data from whole embryos, but this data is limited in several ways. First,
the ChIP-chip data suffers from a relatively high false positive rate. Second, there is
pervasive non-functional binding throughout the genome by each of these
transcription factors. Third, these data are not resolved in either space (i.e. with
cellular or regional resolution) or time (i.e. all stages measured in the microscopy
dataset are combined into one sample bin for the ChIP data). However, even if these
were not limitations of the ChIP data, we lack a defined model for predicting the
impact of factor binding on the expression of a nearby gene. We do not know, for
example, when a factor is likely to activate versus repress. We also have reason to
believe that concentration of the factors determines their effects a in continuous
fashion, but the thresholds relevant to the activities of each factor are unknown.
Additionally, the expression of given regulators in a given nucleus does not ensure
that the regulators will be able to bind at a given locus due to the local chromatin
conformation at that locus. And if binding is permitted at the distal enhancer, it is
unclear what conditions allow for the activity of the distal enhancer proteins at the
basal promoter. Finally, even if RNA polymerase is successfully recruited to the
basal promoter, it is unclear that the polymerase will successfully elongate and
transcribe the locus given a certain set of distal regulators present at the enhancers
of the gene.

Methods
Classification and Regression Trees

Each classification tree was generated with the RPART package in R172 from
preprocessed vectors of data using the Rpy2 module and additional Python code.
The model for the classification tree was a linear regression predicting one target
gene from the set of vectors of relevant candidate regulators. The residual was
chosen as the complexity statistic to decide whether or not to attempt further
branching at the leaves of each branch. Initially, the complexity parameter was
varied between 0.01 and 0.10. A complexity value of 0.03 gives good results for the
gap gene patterns, with higher values dismissing clearly meaningful partitions, and
lower values leading to multiple branches from the same predictor. Importance
sampling was conducted using the randomForest package from R16°.

Factor data were included in the set of predictor vectors if the given factor was a
plausible regulator of the target gene being predicted at the time point under
consideration. For example, the gap gene Kr was predicted by gap and maternal
genes such as giant, bicoid, caudal, hunchback, and knirps (along with approximately
30 others) at the earliest time point. Whereas the classification tree for even-
skipped pattern in the late-blastoderm considered all expression data that could not
be ruled as plausible by the absence of binding in the ChIP-Chip datasets (see



below). In the case where both protein and mRNA data existed for a given factor,
and both were of ostensibly high quality, the protein data were used and the mRNA
data removed. In some cases, for example zen and zen2 mRNA, the zen data was
much better than zenZ2, and the zen2 data were removed from the set of predictor
vectors.

If BDTNP ChIP-Chip data existed for a candidate regulator, the genomic binding
profile of the factor was considered in the predictions. Due to the high false-positive
rate and the existence of pervasive non-functional binding in the ChIP-chip data, the
data were used only to remove candidates if there was no evidence for binding in
the 1% FDR binding dataset. Evidence was permissively defined as significant
binding within 10kb of the TSS or TTS of the locus.

In situ hybridization

Embryos of the following stocks were collected for one hour and aged for 2 hours
before fixation in 5% formaldehyde in heptanes for 20 minutes:

OreR
P{ftz/lacC}1, ftz14/TM3, Sb1 (BDSC #5333)

Df(3R)tll-e, cal/TM6B, Tb1 cal (BDSC #5415)
cul tlll49/TM3, P{ftz/lacC}SC1, Sb1 Ser1 ryRK (BDSC #7093)

Embryos were stored in methanol until pre-hybridization. A custom protocol was
developed for the four-color stains required for simultaneous detection of
hunchback mRNA and the protein of interest with the BDTNP image acquisition
pipeline (which was previously limited to three color stains). Embryos of each
relevant genotype were pooled during pre-hybridization as to minimize
experimental variation across the samples. Each pool was then stained for
hunchback mRNA in Coumarin, ftz::lacZ mRNA as a reference pattern in Cy3, either
FTZ or TLL protein via antibody staining with Alexa-633 conjugated anti-Rabbit
secondary, and the nuclear dye Sytox Green as according to the Protocol S1.
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Protocol S1: Four-color in situ hybridization for BDTNP Pipeline

Rehydrate embryos from methanol - Zhr

The embryos are stored in methanol, but need to be rehydrated before we can
perform any histochemistry. We use a “stepped” rehydration procedure rather than
just rehydrating directly into PBT+TX. This is supposed to better preserve
morphology, but is not absolutely necessary. After rehydration, aliquot 20-50ul of
embryos into each 1.5ml tube for staining (15 ul of fly embryos in methanol will be
about 20 ul when rehydrated, and this 20 ul volume is what you want per tube).
Rehydrate only what you plan to stain, leaving rest in methanol for future use. This
assumes that the fixed embryos have been stored in 100% MeOH.

Rock the embryos 5 min in 1:1 EtOH / MeOH
Rinse 2X with EtOH

Rock the embryos 5 min in EtOH

Rock the embryos 5 min in 50% EtOH / PBT+ TX
Rinse the embryos 2X with PBT+TX

Rock 4X 15 min with PBT+TX

Sl W

Prehybridization - 3hr

Rock 10 min in 1:1 PBT+TX / hybe at room temperature
Incubate 10 min in pre-warmed hybe at 55C

Change hybe and incubate 45 min at 55C

Change hybe and incubate 1 hr 15 min at 55C

BN

Preabsorb anti-Digoxigenin-HRP (if used)

Take an aliquot of embryos (20-50ul) into an eppendorf-tube

wash 3 times with PBT+Tx in room temperature

put embryos into 1ml 1% BSA in PBT+Tx

add 20pl of anti-Digoxigenin-HRP into the tube to generate 1:50 stock
solution.

5. nutate over nightin 4°C

B e

Hybridization - 30 min + overnight

1. Take aliquots of prehybridized embryos into eppendorf-tubes. If the volume
of the embryos is 20 - 50pul, 200ul total volume with Hybe is enough, if the
volume is 50 — 120ul, 300-500ul total volume is OK.

Warm the embryos in a heat block or water bath into 55C - 59°C.

Aspirate hybe from embryos so that they are just barely covered in the tube
Dilute probe in 100ul hybe. (1:100 for DNP, 1:50 for DIG)

Denature probe secondary structure by placing dilute probe at >80C for 2-3
min.

v Wi
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6.
7.
8.

Snap cool probe on fresh ice.
Quickly add probe solution to the prehybe’d embryos.
Incubate at 55C overnight (> 10 hours, < 48 hours)

Hot Wash - 3.5 hr

ol Wi

Rinse with pre-warmed hybe (55C)

Change hybe and incubate at 55C for 5 min

Change hybe and incubate 2X at 55C for 15 min

Change hybe and incubate 2X at 55C for 30 min

Rinse 3X with PBT+TX at room temperature

Rock 4X for 20 min in PBT+TX with Roche Blocking Solution (1:5 Roche in
PBT+TX)

Incubate with first probe antibody - 2.5 hr

1.

Incubate with anti-DIG-HRP or anti-DNP-HRP for 2 hr at room temperature
a. anti-DIG-HRP should be preabsorbed, and used at a final
concentration of 1:200 to 1:500
b. anti-DNP-HRP should be used at a final concentration of 1:100

Wash first probe antibody 2 hr 15 min

1.
2.
3.

Rinse 3X with PBT+TX
Wash 6X for 20 min with PBT+TX
Wash overnight with PBT+TX
a. Overnight wash is essential for anti-DIG-HRP, but optional for anti-
DNP-HRP

First Color Reaction - 1 hr 15 min

U

Aspirate PBT+TX, leaving 100pul embryos + buffer. If there are more than
100ul embryos, double all volumes.

For every 100ul embryos + PBT-Tx, add 100ul Tyramide amplification
diluent.

For every 100ul volume in tube, add 1ul Coumarin-tyramide and mix well.
Take an aliquot from each tube and place on microscope slide and cover with
22 x 22mm coverslip

Nutate tubes at room temp.

Observe the color reaction under the UV-filter on a fluorescence microscope.
When a pattern becomes visible as brightness grains, stop the reaction by
adding 1mL PBT-Tx. If there is not a pattern after 1 hour, the staining has
probably failed. Stop the reaction at 1hour 15 minutes and continue to
determine if it worked too weakly for the eye to detect.

Wash color reaction - 20 min
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1. Rinse 5X with PBT-TX
a. Embryos can be left at 4C overnight

Strip antibodies off embryos - 2 hr 30 min

Wash with 1:1 Hybe in PBT+Tx for 5min at 55C
Wash 4X 10 min with HybeB or Hybe at 552C.
Rinse 3X in PBT+TX
Wash for 15min in PBT+TX
Rock in 5% formaldehyde in PBT+TX for 20 min
Rinse 3X in PBT+Tx.
Rock 3X 5 min in PBT+TX
a. Embryos can be left at 42C overnight
8. Rock for 30min in PBT+TX + Roche blocking reagent

Nk wh e

Incubate with second probe antibody and primary antibody - 2 hr 15 min

If some of the first color reactions failed, take new aliquots to the microscope and
inspect them. If there is no pattern even after the excess coumarin-tyramide has
been washed away, discard the tubes that failed.

1. Incubate with anti-DIG-HRP or anti-DNP-HRP for 2 hr at room temperature
a. anti-DIG-HRP should be preabsorbed, and used at a final
concentration of 1:200 to 1:500
b. anti-DNP-HRP should be used at a final concentration of 1:100
c. primary antibody concentrations should be optimized for good signal

Wash second probe antibody - 2 hr 15 min

1. Rinse 3X with PBT+TX
2. Rock 6X 20 min with PBT+TX
a. The first 3 of these washes shouldn’t be longer than 20 minutes or the
background will increase. If there is no time for further steps, the
embryos can be left in the last wash overnight at 4C.

Second Color Reaction 1 hr 15 min

1. Aspirate PBT+TX, leaving 100ul embryos + buffer. If there are more than
100ul embryos, double all volumes.

2. Forevery 100ul embryos + PBT-Tx, add 100ul Tyramide amplification
diluent.

3. For every 100pl volume in tube, add 1pl Cy3-tyramide and mix well.

4. Take an aliquot from each tube and place on microscope slide and cover with
22 x 22mm coverslip

5. Nutate tubes at room temp.
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6. Observe the color reaction under the UV-filter on a fluorescence microscope.
When a pattern becomes visible as brightness grains, stop the reaction by
adding 1mL PBT-Tx. If there is not a pattern after 1 hour, the staining has
probably failed. Stop the reaction at 1hour 15 minutes and continue to
determine if it worked too weakly for the eye to detect.

Wash color reaction - 20 min

1. Rinse 5X with PBT-TX
a. Embryos can be left at 4C overnight

Incubate with secondary antibody — 2 hr 15 min

This step is very similar to the primary antibody, but no need for additional
blocking.

1. Incubate embryos for 2 hours on ice with an Alexa-conjugated secondary
antibody (1:500 dilution)
2. Wash 6X for 20 min with PBT+Tx.

Staining nuclei - 30 min + overnight

1. Rinse 3X with PBT+TX
2. Bring volume to 500ul PBT+Tx.
3. Add 10pl Sytox green (1:100)
a. Use separate tips for each tube. Because Sytox green is an
intercalating dye, it should be treated as a potential carcinogen.
4. Mix sytox well by pipetting vigorously (don’t shake), otherwise embryos will
not stain properly.
5. Wrap tubes in foil and rock at 42C overnight or up to 48 hours.

Dehydration — 1 hr 15 min

Rock with 30% EtOH in H20 for 10 min
Rock with 50% EtOH in H20 for 10 min
Rock with 75% EtOH in H20 for 10 min
Rock with 87.5% EtOH in H20 for 10 min
Rinse 3X quick 100% EtOH

SRR

Mounting - 1 hr + 2 days for drying

Aspirate EtOH, add 75ul xylene per slide to be mounted to each tube
Wipe slides clean with EtOH, layout on paper towels

Make bridges using #1 cover slips

Pipette embryos up and down to keep them moving and add them to the
slide.

B e



5.

6.

7.

Cover embryos with 350ul DePeX using cut P1000 tips. Use a different tip for

each slide.

Pick a clean cover slip from EtOH with forceps, dry it with lens paper and

drop onto sample. Beware of bubbles.

Allow slides to dry 2-4 days in dark.

a. Even after drying, the slides should be kept flat for approximately one

month, since the DePeX will flow slowly if the slides are sideways. The
slides will be dry enough for staging embryos the following week.
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Figure 1: BDNTP gene expression atlas and ChIP-chip data are integrated into a single model for each target gene pattern for which a tree model is generated.
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Computational Segmentation
with Regression Decision Trees

[Decision 1]

The expression atlas is represented as a matrix of over 100 patterned factors in 6078 blastoderm nuclei, and the ChIP-chip data as a binary matrix where a
regulator is effectively removed from the prediction matrix if there is no binding observed at the target locus.
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Figure 2: A classification tree describes three partitions of hunchback RNA expression at the onset of blastoderm cellularization (time point 1). At each
branch point, the partition predicted by the lower level of the determining factor is branched to the left. At the leaf positions, the quantitative value of
hunchback RNA is plotted for each nucleus from the anterior to posterior of the embryo (x-axis), with the arbitrary scaling of RNA concentration represented
on the y-axis. Each leaf plot contains 6078 nuclei, with the nuclei belonging to that partition colored in blue.
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Figure 3: A classification tree describes the giant expression pattern at the onset of cellularization. This tree accurately captures known repression by the KR
repressor protein, but also exhibits two errors owing to imperfections in the gene expression atlas. The anterior-most partition of 541 nuclei are predicted
by a very high BCD protein concentration, but the atlas does not contain data for the TOR protein that inactivates BCD protein, and thus the tree model
suggests BCD to have a repressive role. In the posterior-most cells, the atlas fails to suggest the CAD protein as the posterior activator of giant, and this is in
part to subpar data for CAD protein at this time point.
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Figure 4: A classification tree describing hunchback expression in the mid-blastoderm after the activation of the pair-rule genes reflects the temporal
dynamics and increased complexity of the transcriptional network.

29



BCD
——
HB sha
'_’ AI.I
| |
=109 n =209
1 1
0 0
-250 250 -250 250
tl tll
‘_i .'
1
gt
n =888 ——
= = 1 1
| n=2459 L =468 [ BCD
n =432 —
] : 1 I 1
n=219 n=1294
1 1
0
° 0 250 250
-250 250 -250 250 o
-250 250
0 0
-250 250 -250 250

Figure 5: A classification tree for the early knirps pattern demonstrates the ability of the tree models to describe information from both the anterior-
posterior and dorsal-ventral axes. RNA of snail partitions anterior-most nuclei into dorsal and ventral leaves.
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Figure 6: ftz mutants (red) appear to effect the posterior hunchback at most in a quantitative

fashion, but separation of the two anterior domains is delayed in the ftz mutants (note two
the anterior spikes in the WT trace (blue).
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CAAAACCAAACAATTTACCAAAAAGTCCTGTGGTCCTTAGGTAGCAAAAAAAAAAAAAAACACTTGCAAAT
CTCTGCTACATTCGCTGGTGAATTTTGCACACTTCTCCGGCATGTCGARGECCTTAGGAAGCCGCAAAAAT
TAACATTTCGCATAAATCAGATGCGAAAAGTGCTCGCGGGTTACGCCCACGAARATGGGTGGAAAGCGAGA
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GGGCGAATAGTTGCTCTAATTTTCATTGTCCGECT TAATGGTTACGCCGTAAAAT TGGCTATGCGGCCAAA
CAATAGTGCGAAGGACGACGGCAGGACGCGCAGGACAATCGTCTGGTGGATTTCCAGTCGACACGCCACGA
GATTTTATGAAGGCAACTCGCTTTGCATGTTATTCCATAGATTTCGCTTCGGTCCCGGTTTGTTTTGGTCA
GGTAAGACCTTCGATTAACAATGAAAGTAGCTGGAAAATCGCGAGAAACT TCGAAAGACACACAAAGATAC
AATATCTATGAGTCTAATGGTCATTAGAGCGGTGCGCTCTACATACAATTGTACCAGCCGTCTTGTTTGAA
GCCTAAAAAACGTCGCAAAAAACACACTTCCGCGTAAGACATCCCATTTCTGTGGTCCGATCGTAAAATAT
TTAGTTTTTTATGACCAACGGTGCGGGCAGGTAGCTGGCTGCCGTTTTTTGTGCGCGACCTCAACCCTTTC
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CGATCTTCTTGGAATTAGTTTTGGTCATTAGGCGAAAGGGTTAATTTCGATTTTGGCTCTCGGTGGGTTTA
CTGAGTGAATTCAATGGGCTAAGGCGAGTAAAGGGTTATACTGTTTTTACATTTTACTACTTGGAAAATAC
TGAAGAACTTGTAGGAAAAATTTCCAGCACTTTTAAAAGCHNINENEAACT T TATGAATATGAACTTCAAA

Figure 7: In addition to BCD, FTZ and TLL bind to the hunchback enhancer in the BDTNP ChIP-chip 1% FDR data. TLL binds overlapping regions with BCD and
FTZ.Both FTZ and TLL sites (p<.001) are plentiful in the bound region near the two TLL peaks, overlapping at one site.
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Chapter 3

The In Vivo Titration of Transcription Factor Dosage Alters Genomic Binding
Profiles and Target Gene Expression in the Drosophila Embryo
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Introduction
The nature of gene switches

The great diversity of animal forms arises despite the overwhelming conservation of
animal gene sequences. This diversity owes largely in part to the great
diversification of the regulatory regions that govern the expression of nearby genes
by encoding short sequences recognized by the binding domains of sequence-
specific transcription factors!?13. These factors bind in a combinatorial and
coordinated manner to these promoter-distal cis-regulatory modules (CRMs) and
either facilitate or inhibit the recruitment of the basal transcription machinery to
the promoter of nearby genes, and in this way, the CRMs act as “switches” to direct
the expression of those genes. The characterization of DNA-binding interactions
typically involves in vitro titration assays to select DNA ligand with high affinity for a
given transcription factor or DNA binding domain115-118, Alternatively, in vivo assays
can be performed with the assistance of a cross-linking agent such as UV irradiation
or formaldehyde to fix the DNA-protein interactions in histochemically purified
nuclear extract, which can then be assayed to characterize the DNA footprint of
bound factor3132121, With the advent of microarrays and high-throughput
sequencing, these assays are now subject the massive parallelization allowing both
higher quality estimates for the affinities of DNA ligands for their binding domains,
and for genomic localization of DNA binding by a given transcription factor4’. In
recent years, the systematic characterization of DNA binding has been pursued in
several models, yielding rich data lending significant insight into the nature of
genome regulation. Comparative studies of this nature have established that the
regulatory information encoded in the CRMs is more conserved than the primary
sequence of homologous CRMs betrays'’3, but also that evolution of this regulatory
information is a major force of animal diversification?4174-177,

From this data also arose a challenge to predict binding and subsequent gene
expression from the primary sequence of the genome alone. This challenge remains
unmet for several reasons. A fundamental understanding of binding energetics and
kinetics in vitro is progressing thanks to atomic resolution experiments and super-
resolution microscopy'%?, but our understanding of in vivo occupancy is still based
on averages of large numbers of molecular interactions. The temporal dynamics of
the combinatorial and coordinate binding of the transcription factors themselves
has only scantly been described even at the resolution of progressing developmental
stages. Thus, the cooperative binding of cofactors or antagonistic competition
between factors is difficult to integrate. Further, the sequence affinities determined
by both in vivo and in vitro studies typically assume that there is only one class of
ligand with affinity for the assayed binding domain, and the exceptions to these
studies have observed cofactor-dependent sequence affinities. Also still in confusion
is the relationship of transcription factor binding to CRMs and the chromatin state at
and around the CRMs. Only sequence-specific DNA binding domains have the
theoretical capacity to interpret the information encoded in the sequence of the
regulatory regions®. The sensitivity of the region to DNasel digestion predicts the
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availability of the region to be bound readily be transcription factors!?7.178, but the
dynamics of chromatin remodeling at CRMs remain poorly understood.

In vitro experiments demonstrate that there is a continuum of binding energies
between a binding domain and its ligands, with imperfect sequence motifs still able
to bind tightly to the protein domain. It is clear that additional binding sites can be
added to recruit more factor to a regulatory region, as shown with the GAL4 binding
site in yeast®l. However, in vivo, imperfect sites are present in CRMs, but it is unclear
that they contribute less to the binding of their factors than stronger sites, or if their
contribution is according to a function similar to the Hill kinetics observed in vitro.

Similarly, it is unclear that the concentration of the transcription factor itself
regulates gene expression in a continuous fashion. The sigmoidal “switch-like”
functions describing both binding and gene induction by the GAL4 activator in vivo
suggestion that indeed the regulatory “switches” in the genome operate like a binary
switch as the concentration of transcription factors regulating the switch region
exceed some threshold®2. In microbes, the titration of increasing allosteric activator
does indeed drive graded increases in expression across a population of microbes,
but recent work suggests this population increase does not reflect the kinetics
within individual microbes at their respective promoters'79.180, The existence of
morphogen proteins, which direct differential gene expression programs according
to their local concentration, also suggests that regulatory regions respond variably
to a continuum of their regulatory factors'81-183, The argument for continuous
sensitivity, however, argues that in some biologically relevant nuclei, the
concentration of the protein must not be present in extreme excess of the number of
available binding sites. It is unclear that this is or is not the case given both the
scarcity of quantified in vivo concentrations of transcription factors and the
difficulty in defining discrete binding sites in a non-probabilistic manner. In the
cases that are quantified, the concentration of protein does radically exceed the
number of bound regulatory regions, but the total number of high-quality sequence
matches in the genome is not dwarfed by the number of protein molecules per
nucleus86122, Additionally, it may be that even the most canonical of morphogen
proteins affect regulation indirectly via induction of feed-forward and feed-back
cooperativity loops, and that their concentration past a binary threshold is
irrelevant!84,

Ergo a few models exist regarding concentration of transcription factor in vivo and
the consequences of varying that concentration. It may be that, as the “flip switch”
model of the GAL4 model suggests, when a transcription factor is expressed, it is
expressed to radical excess of its genuine targets, saturating the binding curve of the
available sites (Figure 1). Alternatively, it may be that binding sites throughout the
genome are not saturated by transcription factor, even under strong induction. An
intermediate model would allow for saturation at some sites, while the same
concentration of factor fails to saturate weaker sites. In this model, if in vivo
concentrations are saturating, then high concentrations of transcription factor
would not increase binding at high affinity sites, but would at other lower affinity
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sites. This model consistent by the mechanisms thought to operate in morphogen
gradients185, A generalization of this model includes the possibility that unsaturated
sites in the genome are non-functional, allowing for the possibility that some
regions are sensitive to transcription factor concentration with respect to binding,
but as a rule, there is no consequence to gene expression as a result of this
sensitivity. This could be because evolution has not needed to tune the specificities
of regulatory sequence and changes in binding do not effect changes in the
expression of the target loci. It is also not clear that the regions most highly bound
by any particular transcription factor are the most functional region, though these
properties are generally assumed to be positively associated. Robustness could also
arise from the non-linear properties of the transcriptional network, in the fly, for
example, the cross-repression of gap genes!30.186 and the auto-regulation of pair-rule
genes187-189_ Finally, it could be the case that the appropriate model for
understanding the role of concentration varies between transcription factors.

The maternally deposited activator bicoid is a homeodomain-containing
transcription factor responsible for directing the anteriorization of the fly
embryo199, Its canonical morphogen activity suggests that its targets are sensitive to
varying concentrations of the factor throughout the anterior of the embryo, which
are highest in the anterior tip and recede to a minimum in the posterior of the
embryo44191, The decoding of the morphogen position and concentration has been
the focus of much molecular experimentation and computational modeling, but is
still not well understood!#4. In surveys of genomic binding by ChIP-chip and ChIP-
seq, BCD protein binds to fewer regions than other early regulators of embryonic
patterning in the fly122.192 though still 5-10 times more regions than have been
characterized by small-scale validation184.

The zygotically transcribed gap gene Kruppel is a zinc-finger containing protein with
well-characterized repressor activity?9.193.194, Unlike bicoid, it is expressed in one
central domain, which is tightly contained by flanking gap gene repressors both the
anterior and posterior sides1951%, Genomic binding data for Kruppel identified an
order of magnitude more high-confidence bound regions than for bicoid, though the
number of small-scale validations for KR protein regulation are considerably fewer
than for BCD protein122.147,

Here, I have collected genomic binding data for both BCD and KR proteins in an
allelic series of dosage variants for these proteins. The maternal genetics of bicoid
allow for both lower and higher dosage of the gene product with existing fly lines,
and for Kruppel, a copy number variant with twice the natural dosage of functioning
Kruppel alleles was created. In addition to binding data, expression of the
transcriptome was profiled with single-embryo RNA-seq!®7, and microscopy
samples were generated for dozens of target genes in whole embryos. These data
show that varying gene dosage and protein concentration does have a considerable
impact on genomic binding of these two transcription factors in vivo. As
concentration is increased, binding increases at many sites with high primary
sequence affinity for the protein. The putative function of these dosage sensitive
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regions differs for each transcription factor, but the dosage sensitive regions are
associated with differential expression of nearby genes.

Methods
Characterization of mutant flies

The allelic series of bicoid dosage variants consists of 1, 2, and 6 copies of the locus,
which is transcribed by the mother and deposited to each offspring, no matter their
genotype. The following flies were used in the allelic series:

bcd M12-3 (bcd/TM3,5b)
OreR (wildtype)
bcd +5+8 (double P-element insertion on X)

The mutant bicoid flies were a gift from Stephen Small at NYU and are descendents
of the flies created by Wolfgang Driever.

The Kruppel over-expression flies are the result of a homozygosed insertion of the
bac recominbeered CH321-25N 18198 region to the attP2 site located on
chromosome arm 3L.

Mutant expression for each line was confirmed by RNA-sequencing and antibody
staining for the mature protein product. As expected, the expression pattern of BCD
protein varies according to gene dosage, but the domain of KR protein expression is
contained to the same domain as wild-type. Additionally, local protein
concentration at fixed points in the BCD gradient varies according to dosage, as was
observed previously*4; KR dosage increase similarly confers higher concentration
per nucleus.

ChIP-sequencing

Antisera was purified using constructs made available by the BDTNP for BCD and
KR epitopes. The purified antibody was used at approximately 1ng/ml in
immunopurification.

Mutant embryos were collected for one hour and aged to the early blastoderm stage
at 25C before dechorionation and fixation. Nuclei were purified and sonicated, and
chromatin was immuno-purified according to Protocol S2. The resulting DNA
samples were [llumina sequenced yielding approximately 5,000,000 mappable
reads for each sample.

Reads were mapped with bwa641%9 to the dm3 genome made available by the UCSC
Genome Browser. Read coverage for each sample was scaled to 10,000,000. Bound
regions were called with MACS1429, and for each factor, the wild-type OreR flies
used as the reference set. The most significantly bound regions for each factor (FDR
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< 1%) were compared across the samples, and where multiple samples overlapped,
the regions were trimmed to the intersection of the called regions.

RNA-sequencing

Two replicates of single embryos for each mutant were collected and staged from
nuclear cycle 10 through 14 and whole RNA was extracted. For stages relevant to
bicoid and Kruppel expression, the RNA was poly-A selected and Illumina sequenced,
generating on the order of 30,000,000 reads per sample. Reads were mapped using
the Tophat/Cufflinks201 suite and differences in expression compared to wild-type
data were determined by using the stage-matched raw data from CaS flies. Cuffdiff
was used to determine fold change and significance with all samples from each
dosage series considered jointly.

Primary Sequence Affinity

Primary sequence affinity was calculated by scanning the region of interest for
matches to the probability weight matrix for the given factor125. Only significant
matches (p<.001) were considered. The final score is exp(sum(-log(score pvalue))).

Microscopy
Embryos were stained and imaged according to Protocol S1 in Chapter 2.
Additional analyses

All additional analyses were performed with custom Python code. This code is
available on request, and will be made publically available in the future.

Results
Dosage Series Mutants Constitute a Titration of Their Gene Products

The mutant fly lines in used in this study were characterized to verify that the
increase in gene dosage produced an increase in local gene product concentration.
The RNA levels for both bicoid and Kruppel lines were compared to wild-type levels
and verified to constitute a dosage series. FPKM values for bicoid demonstrate a
surprisingly consistent RNA dosage. 2X flies contained just slightly less than twice
the RNA of 1X flies, and 6X flies contained slightly less than three times the RNA of
2X flies (Figure 2). Protein levels for the bicoid series were established previously,
but to confirm this both bicoid and Kruppel flies were antibody stained and await
quantification by the BDTNP microscopy pipeline.

Many Bound Regions are Sensitive to Gene Dosage

To compare relative binding between the samples, the scaled read density was
calculated across each bound region, and the regions ranked accordingly for each
sample. Absolute binding is unknowable from these data, as a decrease in binding
for a particular region in one sample does not necessarily mean that there is less
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binding at in one sample versus the others, as it could also be the case that all other
regions increased while the particular region stayed constant. Nonetheless, the
regions that shift position in the rank list comparison can be interpreted as regions
that were bound relatively differentially across the samples. Signal to noise ratio
varies among the samples, which is attributable to variation in IP efficiency and
library construction, but samples with the best signal were selected from each
genotype for the analysis.

Variation in bicoid dosage between the samples clearly disrupted the rank order of
392 bound regions in the 1% FDR set (Figure 3A). Reduction of BCD had a larger
effect than increasing BCD, though the top of the ranked list was largely invariant for
all three samples. The disruption of binding across 1770 bound regions in the KR
ranked lists was less pronounced than either BCD variation (Figure 3B).

Functional BCD Bound Regions are Insensitive to Dosage Variation

The widespread disruption in BCD binding demonstrates that some bound regions
are sensitive to BCD dosage. However, the most highly bound regions were also
highly consistent across the dosage series. All of the regions considered in the
ranked lists are likely to be genuinely bound in vivo with the FDR cutoff set at 1%.
However as non-functional binding is a pervasive trait of the transcription factors in
the fly blastoderm122202, | asked if these regions were enriched for, or were proximal
to, bona fide functional regions. The distance of bound regions to validated
blastoderm CRMs from the RedFly database?%3 is zero or close to zero for the
regions at the top of the ranked lists in each sample (Figure 4A). Though there are
varying signal to noise profiles in the three samples, this measure confirms that the
majority of bona fide regions are recovered in each sample.

To ask if there exists a difference in the regions biased toward higher binding in
higher or lower protein dosage conditions, difference-ranked lists were compared
for the distance of each bound region to a RedFly region. RedFly regions, plotted as
the array of data points at zero on the y-axis, are enriched at the high-consistency
regions, near zero on the x-axis (Figure 4B and C). Additionally, many regions that
are close to, but not directly overlapping, known RedFly regions are also exhibit
high consistency between the samples. In both 1X and 6X dosage flies, the regions
with relatively higher binding are farther from RedFly regions than are regions
more highly bound in the 2X flies. This could be due to signal variation in the
datasets, or to a real effect of increased protein binding to additional non-functional
sites in the 6X case, and real reductions in binding at functional sites in the 1X case.

KR Bound Regions are Not Enriched for Functional Annotation

Most functionally annotated RedFly blastoderm CRMs are represented in the KR
bound regions. However, unlike BCD bound regions, KR bound regions in both
samples are not enriched for functional annotation generally, and only minimally at
the very top of the ranked list (Figure 5A). Consistent with this observation is the
lack of proximity to RedFly regions in the high-consistency regions (Figure 5B),
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however the distribution of RedFly regions appears symmetrically distributed about
the center of the ranked difference list, suggesting both samples recovered the
RedFly regions with similar efficacy. There is a noticeable flattening of the LOESS204
curve at the high-consistency regions, suggesting that the high-consistency regions
are of a similar and intermediate distance to the nearest RedFly regions. If there is
any trend in this data set regarding bias toward one set of bound regions, it is for
closer proximity in the 4X sample, but it is less pronounced than for the BCD
samples.

Primary Sequence Affinity Corresponds to Dosage Sensitivity

Higher BCD dosage increases relative binding at many regions, and these regions
are enriched for high primary sequence affinity (Figure 6). For BCD samples, the
regions biased toward relatively lower binding in the 1X dosage sample have
symmetrically lower binding than their 2X biased counterparts. Thus, the BCD
bound regions are sensitive to both higher and lower BCD concentrations. However,
the regions biased toward higher binding in higher dosage samples are not the
highest affinity regions. The high-consistency regions have the highest sequence
affinity of all BCD bound regions, while the regions biased toward lower dosage
samples exhibit lower primary sequence affinity. The sequence affinity of 4X biased
regions in the KR data are of the highest sequence affinity, asymmetrically higher
than their 2X biased counterpart regions. In contrast to BCD samples, the KR high-
consistency samples are of similar and intermediate sequence affinity (note the
flattening of the LOESS curve in Figure 6D).

Changes in Binding Correspond to Changes in Gene Expression

Dosage sensitive variation in binding is associated with variation in the expression
of gene nearby the dosage sensitive bound regions (Figure 7). Dosage sensitive
regions biased toward increased binding in the 6X BCD sample were expressed at
higher levels than their 2X biased counterparts in genomic expression data (Figure
7A). If statistical significance criteria reported by the multivariate model of CuffDiff
(see methods) are applied to these results, the data are more sparse, but the
association strengthens. Similarly, regions biased toward increased binding in the
KR 4X sample exhibit lower expression in the genomic expression data (Figure 7C).
These results are consistent with the well-established roles of BCD as
transcriptional activator and KR as transcriptional repressor. In the case of BCD
under-expression, there is not a predominant trend in gene expression, as 1X biased
regions do not generally exhibit lower expression as compared to the high-
consistency or 2X biased regions (Figure 7B). This is consistent with the flatness of
the LOESS curve describing the sequencing affinity in the 2X biased regions relative
to 1X biased regions in Figure 6C. Interestingly, the high-consistency regions in all
samples express at similar and intermediate levels, as illustrated by the flattening of
the LOESS curve in each subplot near the center of the x-axis.

Changes in Relative Binding are Present at Some Functional BCD Bound Regions
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While it is generally the case that functionally annotated BCD bound regions exhibit
more consistency in their binding and gene expression profiles, there are clearly
cases of divergence. Figure 8 shows three cases of bona fide BCD targets near bound
regions with variable binding profiles. In the case of btd, an anteriorly expressed
gene with a dosage insensitive expression pattern, there are two binding site
clusters of high sequence affinity (Figure 8A). The binding to the CRM is very
consistent for 2X and 6X samples. The 1X sample is bound more strongly at the 5’
cluster relative to the 3’ cluster, which is the reverse of the 2X and 6X binding
profiles. As was the case for the genomic data set, the stronger binding site cluster is
bound relatively more strongly in the presence of BCD concentration. Expression of
btd is very similar across the samples, but while the expression domain constant
across BCD dosage conditions, the FPKM of the sample does modestly increase in
the 6X dosage.

The gap gene hunchback is the earliest target of BCD activation in the embryo, and it
is critical for setting the anterior compartment boundary of the embryo. The
expression domain of hunchback is very sensitive to BCD dosage, extending nearly
50% egg-length from 1X to 6X dosage. Accordingly, the FPKM of hunchback rises
more than two-fold in across the dosage series. Binding of BCD to hunchback is
present at two well-characterized CRMs162.205 (Figure 8B). BCD protein binds
strongly to both of these regions, and binding to both is required for proper
expression of the hunchback pattern, though binding at either is sufficient for
anterior expression. Despite the co-functionality of these CRMs, only one of these
regions appears to be sensitive to BCD binding, even though both regions have very
similar primary sequence affinity. The distal enhancer is bound relatively more
strongly than the P2 enhancer, but increasing BCD dosage increases the binding
only at the P2 enhancer.

The expression pattern of the eve gene is BCD dosage sensitive, but the whole-
embryo expression levels of the pair-rule gene appear consistent, though the 6X
sample levels are modestly higher than 1X and 2X (Figure 8C). Like hunchback, there
are two well-characterized eve CRMs activated by BCD. The strongest binding is at
the stripe 1 enhancer!%, for which the relative binding profiles for each dosage are
similar. At the stripe 2 enhancer¢’, however, there is relatively stronger and very
similar binding in the 2X and 6X samples. Similar to the btd case, the stronger
binding site cluster is relatively more occupied.

These results also come with two caveats that merit repeating. First, the binding
profiles compared here are relative within and between samples. Though a
particular peak may have a similar binding profile at all dosages, it is possible that
one sample contains proportional increase or decrease at all loci. The
disproportionate change in binding of adjacent bound regions near the same gene is
thus the strongest evidence for a genuine change in binding, but the absolute scale
of binding in each sample is unknown. Parsimony suggests that a higher BCD Dosage
should generate relatively higher binding in these cases, but it is not strictly true.
Second, varying bicoid dosage variably anteriorizes the embryo, thereby
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transforming the expression domains of many anterior genes, and these results
should be considered with that in mind, but there are several lines of evidence
reviewed in the discussion suggest that this is not the principal or exclusive
phenomenon driving these observations.

Discussion
Transcription Factor is Not Saturating at High-Confidence Bound Regions

In this work, [ have shown that many genomic regions bound with high-confidence
by the canonical sequence-specific transcription factors Bicoid and Kruppel are
sensitive to the dosage of these proteins. The changes in relative binding at these
dosage sensitive regions are structured with respect the functionality, sequence
affinity, and associated gene expression from nearby coding regions, however the
structure in these dimensions varies between the two factors. Regions bound by
increasing levels of BCD protein have a high affinity for the BCD protein, but not as
high as the regions with consistent binding between the samples. These high
consistency regions are dosage insensitive with respect to binding and to the
association with expression from nearby genes. The highly consistent KR bound
regions are not the enriched for functionally annotated regions, nor are they the
most highly bound regions. However, regions sensitive to the increased dosage of
KR have the highest sequence affinity for the protein of all KR bound regions. In the
case of both BCD and KR dosage sensitive regions, where the transcription factor is
at relatively higher occupancy, the expression of nearby genes changes are
consistent with the roles of these two proteins as activator and repressor,
respectively.

These results suggest that these canonical transcription factors are not present in
concentrations that radically exceed the number of available high affinity binding
sites in the genome. However, the bulk of the changes do not appear in either case to
be predominantly at functionally annotated regions. This supports a model of
quantitative binding and quasi-functional regulation of many sites, where binding
and nearby gene expression can be influenced by the concentration of a
transcription factor, but the most functionally important sites are insensitive to
quantitative variation in the factor concentration.

However, some changes are present at canonical and functionally annotated targets
of the BCD transcription factor. Though the changes in binding and gene expression
observed are no doubt in part due to the variable anteriorization of embryos in the
dosage series of BCD protein, several lines of evidence argue that this is not the only
force underlying these observations. First, I observe disproportional changes in
binding at adjacent bound regions both known to functionally require BCD for
proper activation of their target locus. If additional binding at the hunchback CRMs
was the product of expansion of the hunchback expression domain with higher BCD
dosage, then each additional BCD-expressing nucleus should proportionally increase
binding to both hunchback CRMs, canceling in terms of their relative binding
profiles. Second, some targets of BCD do not appear to have dosage sensitive
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patterns, such as btd. Yet at this locus, there is disproportional increase in binding at
the 3’ binding site cluster of the btd CRM. Finally, the sequence signal associated
with increased binding of BCD suggests that it is indeed the case that most protein is
bound to the sequence with highest affinity, and there is no reason to expect this
result with the trivial model of expanded anteriorization. That the same relationship
of strong sequence affinity and higher relative binding is observed for KR suggests
that this model phenomenon can be generalized, reinforcing the observation.

Bound Regions Sensitive to BCD and KR Dosage Behave Differently

Though both BCD and KR dosage sensitive regions share enrichment for high
sequence affinity and association with nearby gene expression, they differ with
respect to their overall binding, binding consistency across samples, and enrichment
for functionally annotated regions. The KR bound regions with the highest overall
binding in both 2X and 4X samples do not have the highest affinity for KR, though
generally speaking of the 1% FDR bound region list, sequence affinity for KR is high.
This is in contrast to BCD, which exhibits the highest sequence affinity at highly
bound and functionally annotated regions, which are also not enriched in the most
highly bound KR regions. It may be that for KR, the highest sequence affinity has not
been selectively tuned for binding at the functional sites. Perhaps a better
understanding of the biophysics of binding by this C2ZH2 zinc finger protein would
reveal a reason why suboptimal binding is best for functional KR bound regions.
Alternatively, it may be that KR functions as more than a repressor at CRMs that
direct expression of embryonic patterning genes. The definition of functional region
here is an annotation of blastoderm CRM function, but it is conceivable that KR is
bound more pervasively to targets in the genome distal from blastoderm CRMs than
BCD because it has a broader role in repression or chromatin insulation.
Comparative data for KR binding may shed light on these alternative models, if
pervasive binding at the highest affinity sites distal to blastoderm CRMs is
conserved between species of Drosophila.

A Model for In Vivo Occupancy and Kinetics

The data collected suggest that both BCD and KR bound regions are sensitive to
dosage. Notably, in the BCD samples, there is evidence that the regions are
responsive to a lower dosage with respect to binding, though nearby gene
expression seems generally unaffected. This suggests that while heterozygosity of a
transcription factor is broadly sufficient for wild-type gene expression levels, it also
suggests that there is excess BCD protein and excess BCD binding present in the
wild-type embryo. This is consistent with the observation that it is the highest
affinity sites that absorb increasing amounts of protein, raising their occupancy.
This is in contrast to the model provided in Figure 1B, which suggests the strongest
affinity sites will become saturated first, possibly with weaker sites absorbing
excess protein thereafter. While the model from Figure 1B seems true in vitro, and
has some support from previous study of the Dorsal morphogen gradient, the data
here suggest that there are copious high affinity bound regions with capacity to bind
increasing molecules of BCD protein.
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However, these dosage sensitive sites are generally not bona fide functional bound
regions. That the BCD functional sites are generally dosage insensitive, but of
comparable or even higher sequence affinity compared to the dosage sensitive
regions suggests that these sites may indeed be saturated. It also suggests forces
outside of factor concentration and primary sequence affinity are determining the
affinity of these sequences. For example, the eve stripe 2 enhancer has considerably
higher primary sequence affinity for BCD, but binding in all samples is much lower
than the binding at the stripe 1 enhancer. The binding domains of BCD and KR are
known to directly compete for overlapping sites, in addition to mechanisms of
short-range and long-range repression attributed to KR. KR binding is considerably
higher at the stripe 2 enhancer. Perhaps the stripe 2 enhancer exhibits dosage
sensitivity not because of its higher primary sequence affinity for BCD, but because
the two proteins are antagonistically competing at the enhancer, and the increased
BCD concentration mitigates the repressive effect of nearby or directly-competitive
KR binding. It is also possible that differing profiles of DNase I sensitivity127.206 or
binding of the BCD co-activator Zelda?%” may inform the mechanism underlying
differential dosage sensitivity of these two enhancers.

Transcription Factor Concentration, Disease, and Robustness in Transcription
Networks

It is worth mentioning that each of the mutants comprising the two dosage series
here are viable flies. Though the bicoid mutant fly lines are both quite sick and
proved difficult to collect samples from, this is may be due in part to the
accumulation of deleterious alleles on the balancer chromosome of the 1X flies, and
to the CyO allele carried by the 6X line. These flies and the Kr 4X line both produce
viable offspring in standard development times. For the bicoid over-expression flies,
it is known that massive cell death degrades the expanded anterior compartments,
and that larvae develop normally. In both series, there is widespread disruption to
the expression levels of the gap and terminal genes, but the pair-rule genes are
expressed at remarkable consistent levels. Additionally, heterozygous Kr deficiency
flies exhibit molecular patterning phenotypes (not shown). These observations
suggest that the dosage effects of BCD and KR reverberate though the
transcriptional network, but that compensation takes place prior to gastrulation,
such that segmentation and tissue derivation proceed properly. These patterns are
consistent with what is known of disease associated with transcription factor copy
number variation. Despite the roles in directing the expression of dozens to
hundreds of critical developmental genes, developmental transcription factors are
rarely haploinsufficient, perhaps owing to the robustness conferred by the buffered
kinetics and occupancy at functional sites observed here.
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Figure 1: Two models for CRM response to increasing transcription factor. A) If in vivo concentration is near the kD for DNA binding, varying concentration
of factor should effect changes in binding at both high (black bar) and low (grey bar) affinity bound regions. B) If in vivo concentration saturates the DNA
binding curve, varying concentration should have no effect binding, though this may be mediated by the strength of the binding site.
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Figure 2: Mutant flies used in the dosage series for bicoid and Kruppel flies.
FPKM for bicoid flies at Stage 4B were 34.0, 57.1, and 144.5 for 1X, 2X, and
6X flies. Protein levels agree with quantification by Driever and Nusslein-
Volhard. Kruppel FPKMs were 68.9 and 198.6 for 2X and 4X flies. Both BCD
and KR protein levels are awaiting quantification via the BDTNP microscopy
pipeline.
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Figure 3: Binding rank changes with gene dosage for the 1% FDR bound regions. A) BCD 1X disruption is greater than 6X disruption in 392 BCD bound
regions, but in both cases the top of the rank list is consistent. B) KR 4X dosage disrupts ranked binding throughout 1770 bound regions, but this disruption
is less than the disruption by either BCD mutant.
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Figure 4: Highly bound regions are highly consistent and proximal to functionally annotated CRMs. A) Regions with stronger binding are much closer to
RedFly regions. B&C) Overlapped Redfly regions are enriched in the high-consistency regions (array a data points at zero on the y-axis). Regions biased
toward higher binding in the 6X and 1X sample are slightly farther from RedFly regions.
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Figure 5: A) Unlike BCD regions, KR bound regions are not proximal to functionally annotated CRMs. B) Regions biased in the 4X or 2X data are unbiased with
respect to RedFly proximity.
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Figure 6: Sequence
Affinity of rank-
biased regions.
A,B) BCD 6X
biased regions
have higher
primary sequence
affinity than 1X
ror 2X based
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Figure 7: Changes in
binding correspond to
changes in expression
of nearby genes. A)
Genes near BCD 6X
biased regions are
expressed more highly
than 1X biased genes.
B) BCD 1X biased
regions appear little or
no effect on nearby
gene expression. C)
Genes near KR 4X
biased regions are
expressed less than
high-consistency
regions or genes near
2X biased regions.
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Chapter 4

Two Vignettes of Collaborations Studying Transcriptional Regulation After
Formation of the RNA Polymerase Il Open Complex
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Transcriptional regulation continues after transcription begins. In this chapter, I
briefly describe as vignettes two collaborative efforts studying transcriptional
regulation after the stable recruitment of RNA Polymerase II to an actively
transcribed gene. The first vignette concerns the yeast AAA-ATPase Yta7, a
chromatin remodeling protein208-211 The second concerns the Super Elongation
Complex (SEC)107-110212 '3 complex of proteins present at the transcription start site
of many actively transcribed genes in human cells.

Nucleosome Reorganization in yta7 Mutant Yeasts

Yta7 protein is localized to highly transcribed loci where it facilitates transcription
of the locus by decreasing nucleosome density and promoting transcript
elongation208-211, Yta7 can directly bind histone H3, and under-expression of
histones H3 and H4 attenuates the effect of the yta7 mutant. This evidence and the
observation that yta7 mutants exhibit higher nucleosome density suggested that
Yta7 was regulating the presence and density of nucleosomes at highly transcribed
genes in the genome.

My collaborators MNase digested chromatin from yta7 over-expressors, yta7-delta
mutants, and wild-type yeast. [llumina libraries were constructed with the resulting
DNA fragments and the sample sequenced. The resulting reads were mapped to the
reference S. cerevisae genome with bwa-64. The read density per sample was
normalized to a total of 10,000,000 reads, and these densities were used to identify
the genomic positions of nucleosomes with a combination of previously
published?13 and custom software. The previous conclusions derived from the study
of a handful of induced loci were supported by the genomic characterization of the
yta7 mutant strains. Nucleosome density and spacing does not vary at the -1
position, but density shifts as expected with regard to wild-type data (Figure 1).
Additionally, Yta7 is bound pervasively, but not constitutively, at highly expressed
genes, where this effect is exacerbated (not shown).

Members of the AFF4 Scaffold-associated SEC are Differentially Localized and
Facilitate High Transcriptional Output

RNA Polymerase Il is poised at many genes that are not actively transcribed!01-
103,214,215, At these loci, some transcription occurs, but the nascent transcript cannot
persistently nor efficiently elongate. Unpausing of this activated polymerase is
coordinate with phosphorylation of the Ser2 residue of the C-terminal tail domain of
the polymerasel93. The P-Tefb complex includes cyclin T1 (CycT1) and the cyclin-
dependent kinase CDK91%4. This complex is responsible for the phosphorylation
events that precipitate unpausing and efficient elongation of the transcript.
Members of the AFF family of protein scaffolds organize P-Tefb with the other
members of the SEC complex at the transcription start sites of highly induced
genesl07 It has been observed that at the mis-induced hox genes of MLL-fusion
leukocyte leukemia culture cells, the AFF scaffolds are present throughout the
transcribed ORF?16. The MLL-fusion genes identified by their association with MLL
leukemias are enriched for members of the SEC complex. From these observations,
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it has been suggested that the SEC has a role in gene expression of developmental
genes that when misexpressed contribute to cancer, and also that the SEC is
genomically localized throughout these highly expressed loci.

My collaborators have collected high-throughput sequencing data in human HeLa
cell culture measuring the genomic localization by immunoprecipitation of the
biochemically verified SEC complex members AF9, ELL2, and ENL, along with the
scaffolding proteins AFF1/4, the P-TefB members CycT1 and CDK9, the P-Tefb-
associated bromo-domain protein Brd4, and general and phospho-specific RNA
Polymerase Il complexes. In each case, these proteins bind at thousands of loci in
the genome, and are deeply enriched for actively transcribed regions (Figure 2, 4).
However, these proteins are not bound coordinately in every case, but rather some
combinatorially near different transcription start sites (Figure 2). All members are
present at the TSS of actively transcribed genes, but only some at genes with paused
polymerase. Notably, the SEC does not appear to extend deep into the locus of
actively transcribed genes. Rather, the complex is typically bound well into the first
exon of actively transcribed genes, but only ENL and AF9 show any evidence of
binding deeper into loci. This is in contrast to the model extrapolated from the hox
loci. However, the hox loci are uncharacteristically short human genes, averaging
only a few kb in length, and containing no introns. Thus, it appears that the SEC
typically elongates 2-3kb into the first exon of actively transcribed loci, and in the
case of hox genes, this happens to be the entire locus (Figure 3).

To assess the effect of the SEC components on transcriptional output, my
collaborators collected high-throughput sequencing data measuring the
transcriptomes of HeLa cell cultures after treatment with RNAi constructs for
combinations of CDK9, AFF1 and AFF4, and ENL and AF9. These represent one
dataset with RNAIi targeted to an elongation pre-requisite (CDK9), the scaffold
proteins themselves (AFF1/4), and members that may extend more deeply into
actively transcribed loci. These datasets clearly show effective knockdown of their
intended targets, and the suppression of gene expression of thousands of loci (Table
2) compared to expression in untreated cells. When these data are considered with
the binding data, it is clear that TSS bound in untreated cells by are on average
expressed far higher than average loci, consistent with the role of the SEC as a
transcriptional upregulator (Figure 4). However, the effect on gene expression is
not the same for each component. Indeed, the components that extend the most
deeply into the first exon, AF9, ELL2, and ENL, along with CDK9, are associated with
the highest gene expression, followed by Brd4, CycT1, and the two scaffold proteins
themselves. Though this intriguing observation begs the question of stronger
transcriptional promotion by more deeply elongating factors, but this conclusion
should be tempered. The efficiency of the chromatin immunoprecipitation varies for
each of these factors, and it is possible that the appearance of deeper extension into
actively transcribed regions may be an artifact of poorer efficiency in the ChIP. This
would suggest that the entire SEC does indeed extend into the locus, but only the
first 2-3kb. Either explanation is a possibility that is difficult to distinguish in the

55



case of chromatin associated proteins without sequence-specific recognition site to
orthogonally justify the differential elongation model.
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gene control RNAi CDK9 RNAi AFF1-4 RNAi ENL-AF9
CDK9 5.75 1.26 4.57 3.69
AFF1 3.84 2.60 2.46 5.61
AFF4 12.28 10.37 3.31 14.32
ENL 17.61 14.02 12.18 3.03
AF9 17.46 11.95 13.75 3.30

Table 8A: Knockdown efficiency was high for each SEC member.

> 2 fold decrease

Control (no treatment) n/a
RNAi CDK9 2302
RNAi AFF1/4 1605
RNAi ENL/AF9 2001

Table 1B: Expression of thousands of targets was suppressed with RNAi treatment.
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Figure 1: Normalized and smoothed nucleosome density across the meta-TSS (NFR omitted). While the -1 is similarly positioned across loci, YTA7 levels
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Figure 2: Venn diagrams depicting overlap in three functional groups of SEC proteins and their targets.
A) AFF1 and AFF4 scaffolds appear regulate largely different targets. B) CDK9 is present at most Brd4
bound sites, but CycT1 is detectable at an order of magnitude fewer sites. C) AF9, ELL, and ENL overlap
commonly, but ENL binding is most often accompanied by AF9 binding.
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