Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Modeling Virus Transport and Removal during Storage and Recovery in Heterogeneous Aquifers

Abstract

A quantitative understanding of virus removal during aquifer storage and recovery (ASR) in physically and geochemically heterogeneous aquifers is needed to accurately assess human health risks from viral infections. A two-dimensional axisymmetric numerical model incorporating processes of virus attachment, detachment, and inactivation in aqueous and solid phases was developed to systematically evaluate the virus removal performance of ASR schemes. Physical heterogeneity was considered as either layered or randomly distributed hydraulic conductivities (with selected variance and horizontal correlation length). Geochemical heterogeneity in the aquifer was accounted for using Colloid Filtration Theory to predict the spatial distribution of attachment rate coefficient. Simulation results demonstrate that the combined effects of aquifer physical heterogeneity and spatial variability of attachment rate resulted in higher virus concentrations in the recovered water at the ASR well (i.e. reduced virus removal). While the sticking efficiency of viruses to aquifer sediments was found to significantly influence virus concentration in the recovered water, the solid phase inactivation under realistic field conditions combined with the duration of storage phase had a predominant influence on the overall virus removal. The relative importance of physical heterogeneity increased under physicochemical conditions that reduced virus removal (e.g. lower value of sticking efficiency or solid phase inactivation rate). This study provides valuable insight on site selection of ASR projects and an approach to optimize ASR operational parameters (e.g. storage time) for virus removal and to minimize costs associated with post-recovery treatment.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View