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INV ITED
P A P E R

Rethinking Components:
From Hardware and Software
to Systems
This paper describes a new vision of componentization that poses organizational

challenges to industry practices, engineering approaches and government

leadership. It reviews the history and component design methodologies and

points the way forward as a basis for further research and discussion.

By David G. Messerschmitt, Fellow IEEE

ABSTRACT | The germ of the component idea arose in mass

production as the interchangeable part, but in today’s infor-

mation and communications technology (ICT) industries the

component can connote considerably more, such as multiple

uses, opportunistic combinations with other components,

design by assembly, and incremental evolution through field

replacement with upgraded components. In spite of its many

advantages, the component has failed to keep up with

increasing scales of integration, increasing use of software,

and the resulting complexity and application diversity. A re-

thinking of the component and associated industry practices

is needed in light of modern technology and applications.

Componentization has many payoffs, including as a process for

industry coordination, most notably in large multivendor

complex systems with fragmented administrative and owner-

ship domains. Invigorating componentization requires aban-

doning antiquated concepts such as components are

exclusively hardware or software or even exclusively tech-

nological, are units of manufacture and packaging, or that each

component is the responsibility of an individual firm. The

system component, which incorporates hardware, software,

and oftentimes even human process or organizational ele-

ments, whatever is necessary to achieve a coherent body of

functionality, is the appropriate perspective today.

KEYWORDS | Complex systems; components; design; industrial

organization; modularity

I . INTRODUCTION

Components in their simplest form are elements of

functionality sold as a unit and incorporated into multiple

uses. In the purest form of componentization, systems

are constructed entirely from acquired (not locally im-

plemented) components, which are assembled together

without modification. A component creates value when

assembled with other components (possibly combined

with locally developed technology) to form a system,
which in turn provides a turnkey solution satisfying some

need, like a network or a personal computer. Component-

based design is the antithesis of handcrafting, where a new

system is designed entirely from scratch for a single

purpose.

Components can be traced back several centuries to

the interchangeable part that arose in the munitions in-

dustry and reached its pinnacle in the automobile
industry. While the component played an important role

in the earlier history of information and communications

technologies (ICT), the component methodology has

failed to keep pace with changing technology. Older

readers can remember when systems of scale and

complexity at the limits of consumer affordability could

be assembled entirely from off-the-shelf components.

Witness the Heathkit Company, which had an extensive
catalog of compelling consumer electronics products (like

a color television and high fidelity sound systems) offered

to the consumer as a box of components with assembly
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instructions. Heathkit abandoned this business in 1992
after a long decline [1]. Today components are popular in

hardware, although not as ubiquitous as before, and

componentization is an active area of research and de-

velopment in software engineering [2].

There are much bigger opportunities than electronic

kits. Stepping back and examining the ICT industries

critically, large and complex systems seem to hit an

architectural Bwall[ where innovation and progress is
slowed. Both operating systems [3] and cellular wireless

networks [4] have evolved a series of Bgenerations,[ each a

major redesign (although often sharing technology with

the older generations and seeking to offer backward

compatibility). This carries the heavy burden of offering

sufficient added value with each generation to justify the

heavy development and provisioning costs, a challenge

that becomes more difficult with maturity. The increasing
costs and time associated with achieving backward

compatibility further undermine this approach. For

example, the Windows Vista operating system has been

delayed, attributed in part to the difficulty in maintaining

backward compatibility with numerous complementary

products (such as peripherals and applications) [5]. But

this same voluminous complementarity is largely respon-

sible for Windows’ large market share. Apple Computer
updates its MacOS operating system more often, in part

because the Macintosh and its peripherals are more

proprietary, but this characteristic contributes to its

relatively small market share. The Internet has had

impressive longevity, with an expanding suite of applica-

tions. However, the latest upgrade to version six of its core

protocol (IPv6) is being deployed slowly [6]. It has no

built-in security architecture and other shortcomings,
stimulating efforts to redefine its architecture [7] following

a Bclean slate[ approach that is unlikely to gain direct

market acceptance.

Clearly, our methodologies for architecting large

complex ICT systems have room for improvement. A

major opportunity is to better align these methodologies

with market forces in a multivendor environment with

multiple owners and operators. This issue is even more
critical in distributed business and social applications like

business-to-business e-commerce and social networks,

where change is rapid. This paper asserts that compo-

nentization offers a promising framework for address-

ing these issues and offers a number of other benefits.

The component as it was once defined and practiced is

much less relevant to today’s ICT, but with a rethinking

in light of today’s realities it can once again play a sig-
nificant role.

In the following, componentization is approached from

a number of perspectives, including history, value, and

design process. In addition, some industry cooperation,

industry coordination, and business and economics issues

are considered because componentization has particular

relevance in these dimensions.

II . BACKGROUND

Before discussing opportunities and challenges for com-

ponentization, it is helpful to define some terminology and

give a general definition of the component.

A. Modularity
The component is a more ambitious form of modular-

ity. As shown in Fig. 1, modularity [8] as a design construct

(our perspective here) seeks to Bdivide and conquer[ the
design through decomposition of the overall system design

into smaller modules. There are two primary objectives in

this decomposition: weak coupling and strong cohesion.

Weak Coupling: Modules should have as little depen-

dency on one another as possible. One design goal is a

division of labor, or the ability to assign the design of

separate modules to different individuals or groups, with a
minimum of interaction among those groups. The weaker

the coupling, the more each design can focus on local

properties and ignore nonlocal or global properties.

Strong Cohesion: A module should group functionality

that has strong dependencies. This supports another aspect

of division of labor: specialization. The group designing

each module can employ or develop special expertise and
accumulate experience and thus deal with the design more

efficiently and effectively.

Any decomposition has three facets shown in Fig. 1:

identifying the participating modules, the functionality of

each module, and the interaction among modules.

Each module’s interface defines the capability of the

module exposed to the outside world, within the context of

a specific modularity. An interface has both an external
and internal purpose. Internally, it defines what function-

ality has been promised to other modules and thus guides

the module implementation. Externally, the interface

defines what functionality is available to be invoked by

other modules and thus guides the interactive portion of

their design. A general goal of interface design is ab-

straction, or the hiding of unnecessary or irrelevant

Fig. 1. Three aspects of decomposition into modules.
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internal details of a module, including its implementation.
Abstraction further reduces the dependency among

module designs, especially as to their implementation

choices. In ICT there are much richer possibilities

(Appendix A).

The management and economics literature defines

modularity in other ways, including the degree to which a

system’s elements can be separated and recombined [9] or

the degree to which a system internally conforms to open
standards [10]. For example, applying the first definition,

an automobile tire is not modular because its elements

(rubber and steel bands) cannot readily be recombined

back into a tire after separation. An automobile wheel (tire

and rim) is modular because the tire can be dismounted

from the rim and later remounted. Applying the second

definition, the wheel is modular because there exist in-

dustry standards for rim dimensions and other attributes
that allow multiple manufacturers to manufacture tires for

multiple rims. Although these definitions are not entirely

suitable for modern ICT, they offer useful insights.

B. Composition
Modules are designed such that they can be composed

with other modules in a system integration step. There are

two distinct aspects to this problem [11]: interoperability
and complementarity. Interoperability is the ability of

modules to successfully invoke actions and exchange

information using mutually agreed protocols. Comple-

mentarity implies module behaviors and functionality that

is mutually reinforcing and works to common purposes.

For example, consider a memory and processor. Their in-

teroperability is manifested when the processor reads and

writes data in memory at a specified address. Their com-
plementarity is manifested by the ability of the memory

to store program instructions, which are retrieved and

executed by the processor.

C. Hierarchy
Choosing the modularity of a system involves a

tradeoff between two granularities: fine grain (large

number of small and relatively simple modules) and
coarse grain (small number of large and relatively

complex modules). Finer grain modules are simpler to

implement and are thus preferred by module implemen-

ters. However, decomposition into a large number of fine-

grain modules makes the interaction among modules

voluminous and more difficult to understand. Thus, both

system designers (those who establish the decomposition

in the first place) and system integrators (those who make
the modules work together after their implementation)

prefer coarse-grain modularity because the interactions

among modules are fewer and devoted to purposes

directly related to system capability.

Hard choices can be avoided through hierarchical

design. A hierarchical modularity is illustrated in Fig. 2, in

which modules are themselves decomposed into smaller

modules. A similar modular hierarchy is characteristic of
many types of complex systems and indeed seems to be

central to managing complexity in natural and social

systems as well as in ICT [12]. A system with hierarchical

modularity can be viewed at different granularity’s, from

courser grain at the top of the hierarchy to a finer grain at

the bottom. The goal is to constrain the interacting

modules at each level to an understandable number while

avoiding constraints on the total number of modules.
System design is top-down: first the coarse-grain modu-

larity is established, and at each successive phase the next

level of hierarchy is established by decomposition of the

modules at the next higher level. System implementation,

on the other hand, is bottom-up: Only the modules at the

leaves of a hierarchy are actually implemented, while each

module above is integrated from existing modules below,

starting at the bottom.
Hierarchy offers a compromise between generality

and specificity. The top level of hierarchy has functional

requirements emanating from the system context, like a

network or an enterprise accounting application. As we

move down the hierarchy, the modules become less sys-

tem specific, and more technology specific (for example,

software, semiconductor packages, or communication

links). While the system itself may not have either a
single ownership or single supplier (think of a network),

at lower levels of hierarchy both ownership and supply

become singular. Thus, hierarchy offers architectural

support for the realities of the market, where multiple

suppliers contribute to a large complex system and con-

tribute a variety of specialized knowledge. It also supports

a supply chain in which suppliers themselves utilize sup-

pliers (for example, semiconductor manufacturers who
supply chips to equipment manufacturers, who supply

equipment to systems integrators). The articulation of

industry organization with hierarchical modularity is a

critical issue discussed further in Section III-B.

Fig. 2. Hierarchical decomposition decomposes

each module into submodules.
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D. Components
The degree to which a system’s modules can be called

components is measured in part by the ability to combine

those components in different ways, mixing and matching

components from other systems to realize entirely new

systems. For example, an automobile wheel’s tire and rim

can be called components to the extent that rims and tires

from different sources can be combined, and the argument

becomes stronger as tires with different characteristics
and purposes successfully mount on the same rim. This

multisource property is enabled by industry standards for

rim attributes (like dimensions and strength) that serve to

coordinate the multiple rim and tire manufacturers.

From a design perspective, modules seek to admit im-

plementation changes and functional improvements with-

out affecting other modules. A component is a module, but

its design seeks the more ambitious goal of opportunistic
composition with other components, even where the com-

ponents were not designed with specific knowledge of one

another. Modules are designed for a specific use in the

context of a set of other modules visible to the designer,

and components are designed instead for multiple uses,

including unanticipated ones. These and other design

objectives are discussed in Section VI. There is not a hard

and fast distinction between the component and modu-
larity; it is a matter of degree, because there are inevitable

tradeoffs.

Defining modules by decomposition results in modules

suited specifically to the system’s objectives and require-

ments. In contrast, a component taken from inventory or

purchased or licensed from an outside firm and assembled

with other components was not tailored to specific system

requirements. The value of componentization increases
when the many available versions of a component in the

market are not perfect substitutes (that is, competing only

on price and quality measures), but rather are differenti-

ated functionally so that choosing among the components

offers substantive differentiation in system purpose or

functionality. The system design stage focuses on the

question Bwhat system functionality can be achieved by a

composition of the available components.[ Hopefully,
there is a wide variety of components available with

varying functionality and characteristics, conveying a rich

set of possibilities in system design. Of course, it is possible

(and common) to mix components with handcrafted mod-

ules. This allows degrees of customization or ability to

meet special system requirements not possible by compo-

nent assembly alone.

In summary, components are designed explicitly for
composition with other components, and this implies that

the design of each component can be accomplished in a

different time and place (and often business unit or firm)

from other components. Composition of components is

opportunistic, so the components can be designed without

specific knowledge of one another. In organizational

terms, components are designed without collaboration

with the designers and implementers of other components,
as is usually the case in modularity.

E. Reference Architecture
While one goal of component design is to divorce it

from a specific system context, in many cases it is nec-

essary to position a component within a targeted system

architecture, which we term reference architecture. A

reference architecture specifies sufficient details of the
general system context to enable interoperability and

complementarity with other components also targeted for

the same reference architecture. The reference architec-

ture thus provides at least the minimum level of coor-

dination among component designers necessary to achieve

composibility. One goal is to specify the minimum ar-

chitectural detail necessary to get by, leaving as much

freedom as possible to individual component designs.
Finer grain components may need a minimal application-

independent reference architecture. An example is the

composition of transistor components into a circuit, where

interoperability follows from simple connections and

specification of voltage levels, but complementarity (such

as Boolean logic and timing) is left entirely to the specifics of

the composition (that is, the pattern of connections). So,

reference architecture can be as simple as Btransistors are
connected by wires with certain constraints.[ Coarse-grain

components, on the other hand, typically require a reference

architecture that is more context or application dependent.

For example, the reference architecture for a communica-

tions network would acknowledge certain generic and

necessary functions within networks in general, such as

transmission, routing, switching, and so forth, but would

stop short of specialization to a particular set of network
objectives, such as delivery of telephony or data or video

services.

Reference architectures can be hierarchicalVa com-

ponent can be an internal composition of components.

The defined modularity at one level of hierarchy specifies

a system context for each of its constituent modules. The

system context for a module should exclude anything

above the next-higher level of hierarchy.

F. Infrastructure
Infrastructure captures operational commonalities and

makes these capabilities available separately to be used by

any and all. Applications are a prime candidate for cap-

turing commonalities and are typically built Bon top[ of

infrastructure. Examples include processing and storage

(the computer) and communication (the network). In-
frastructure also includes tools such as (in hardware)

computer-aided design and (in software) programming

languages and compilers and human resources (trained

experts who can execute designs).

The sum of technological capabilities assumed to be

available to support the deployment of a component is

collectively called the platform. In the software realm there
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are three competing component technology environments
and platforms: CORBA Component Model (Object Man-

agement Group), Enterprise JavaBeans (Sun Microsys-

tems), and .NET (Microsoft) [2].

Infrastructure plays an important intermediation role.

For example, in personal productivity applications, Bcut

and paste[ is intermediated by the operating system and

would be difficult to implement within the applications

because this would require coordination between each and
every pair of applications exchanging information in this

manner. Similarly, software component’s interactions are

typically intermediated by the platform to avoid a

combinatorial explosion of direct interfaces that would

have to be defined and maintained [11].

G. Lifecycle
It is useful to distinguish four phases in the life of a

given component. The first phase is development, which

includes both design and implementation. Objectives are

established and a set of requirements and architecture is

established in the design. Those requirements are matched

to a specific technology in the implementation. The

outcome of development is a realization of the component.

A single component may have two or more independently

developed realizations (for example by competing firms).
The second phase is replication, in which copies of the

component realization are created. These replicas may be

identical or may differ as to configuration options (built-in

alternatives left to be chosen at the time of replication).

For physical components replication involves fabrication

or manufacture, whereas in software replication is called

instantiation (the replicas are called instances). Software

instantiation is inexpensive (memory and processing
cycles are all that are consumed) so that replication costs

are insignificant relative to design costs. The third phase is

deployment, where a component replica is introduced into

an operational context. Deployment often requires and

includes assembly with other components. The fourth

phase is maintenance and upgrade, in which a deployed

component is replaced by a newer realization that repairs

design defects and adds functionality.

III . SOME RATIONALE

The rationale for componentization has changed dramat-

ically with technology advances. The sources of value have

changed, the realities of ICT have changed, and the

fundamental concepts of componentization need rethink-

ing to adjust to new realities.

A. What Has Changed
Why are components much less ubiquitous?

Large-Scale Integration: In pre-integrated circuit elec-

tronics, the component was a unit of manufacture and

packagingVa component was manufactured all at once

at the same place and was sold in a physical package
much like the interchangeable part in mass production

(Section V). Today, a unit of manufacture and packaging

in ICT is usually at minimum a large complex subsystem

or system encapsulated in a large-scale integrated circuit

chip. Retaining a historical component definition makes

little sense, for a couple of reasons. The component

would be coarse grain, and for the most part only coarse

grain, with both granularity and levels of hierarchy
constrained by a changing technology. This definition

would also rule out software components, which have a

logical or informational realization and no physical

Bpackaging.[

Software: In the golden age of electronic components,

software was relegated to large and expensive computers in

the data center. Software is now a major element of
everyday products. Today more and more functionality is

implemented in software, in virtually all ICT products.

Software is easy and cheap to replicate so Bmanufacture[
in the historical sense is not an issue.

Outsourcing Alternative: In early industrial history

(Section V), interchangeable parts enabled a move away

from the vertically integrated firm (every aspect of a
product produced internally) to a supply chain (multiple

firms contribute manufactured content to a single

product). In today’s ICT, purchasing parts has been largely

supplemented by purchasing outside services. For exam-

ple, design, semiconductor fabrication, software engineer-

ing, and board- and equipment-manufacture are routinely

outsourced. This is illustrated by Dell Computer, which

has focused its successful business model on assembly and
sales/fulfillment operations and has consciously mini-

mized board- and chip-level hardware and software design

[13]. These trends are encouraged by computer-aided

design and manufacturing and by the Internet, which

reduces delays and coordination costs. Outsourcing in

these forms is not componentization: If supply firms

customize their contributions to a finished product, as

opposed to supplying the same capability to many firms,
then this outsourcing is handcrafted.

Granularity, Scale, and Complexity: With increasing

scales of integration and software, both the scale and

complexity of our systems has increased dramatically. In

this context, scale refers to the replication of similar or

identical elements (like transistors on a chip), and com-

plexity refers to many detailed interactions among
heterogeneous elements. Scale is the Blow hanging fruit[
for components. It achieves economies of scale in both

design and replication, since designing an element once

and then replicating that design many times involves

fixed costs that decrease with scale on a unit-cost basis.

Components also contribute to a concise design repre-

sentation of a large-scale system [12]. Thus, we see
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components like the memory chip that exploit massive
replication of a storage cell. Complexity is a different

matter. Our conception of components has not kept up

with the increasing complexity of our systems. At higher

levels of hierarchy, components represent intrinsically

more complex (and hence more specialized and context-

specific) functionality and are typically replicated fewer

times. There is seemingly less pressure to componentize

in this context if we stick with outdated rationale. For this
reason, components have been largely relegated to the

finer grain end of the hierarchy, while larger grain is

mostly handcrafting territory.

B. Component Generalization
To fit modern ICT, the concept of the component

should be expanded. In the following, some possible

directions for generalization are elucidated. Two examples
of components are invoked.

1) A communication link-as-component is an ele-

ment of functionality that communicates a two-

way stream of data between two geographically

separated points. It is described in more depth in

Section IV-A.

2) An end-to-end network connection-as-component

is a composition of communication links to-
gether with intervening switches to communi-

cate between any two network access points. See

Section IV-B for more details.

Transparent to Physical Realization: A component need

not be manufactured as a unit or correspond to a physical

package. One package may contain multiple components

or just a portion of one component. A component may
reside in a single package, room, or it may be distributed

geographically (for example, the network connection-as-

component).

Element of Design: The component is primarily an

element of design; that is, it is informational rather than

physical in nature [14]. Of course neither do we rule out

cases where a component has a physical reality.

Intermingled Implementation: Component implementa-

tions may be intermingled. For example, many compo-

nents may share the same physical integrated circuit

package, two software components may share common

execution hardware, and two network connections-as-

components may share a common communication link.

Dynamic Replication and Deployment: Components need

not be static persistent objects. They may be fleeting,

meaning they are replicated on demand and destroyed

when no longer needed, as is often true of a software

component. They may also be dynamically assembled on

demand from static persistent subcomponents with that

assembly (but not the subcomponents) destroyed when no

longer needed. An example is the network connection-as-
component that is assembled upon user request. It consists

of assembled communication link-as-components, that as-

sembly later destroyed when no longer needed, and where

those links may be static and persistent. One implication

is that a reference architecture may include specification

of how components are dynamically assembled and/or

replicated.

Transparent to Implementation: Implementation tech-

nologies are fungible to some extent, and their boundaries

change with technology advances. For example, an

ongoing trend is realization of fixed functions moving

from hardware to software. The old concepts of hardware

or software components should thus be replaced with a

philosophy of Bfirst define functionality, and then worry

about implementation later, and allow the implementation
to change over time.[ Different realizations of a compo-

nent may use different technologies. In some cases, an

implementation can incorporate nontechnological ele-

ments (for example, the free-space radio channel in a

communication link) or functionality realized by humans

as well as technology (see Section IV-D for more details).

Fragmented Control: A deployed component may cross
multiple operational domains, where each domain has

independent administrative responsibility and ownership,

as illustrated in Fig. 3. For example, a network connection-

as component will typically span two or more network

service providers and two user premises. Operational

control of the component is thus fragmented among

multiple owners and operators. A good way to address this

is by hierarchical decomposition into subcomponents,
each of which is expected to fall within a single control

domain. For example, a single network operator may

control each individual link and switch in a connection.

Shared Design Responsibility: Historically, the responsi-

bility for design of each component realization falls to a

single firm. However, this is problematic for components

with fragmented control, because it implies that all owners
have to choose a common supplier. This contradicts the

normal prerogatives of ownership, which includes the

right to choose among competitive suppliers. Thus, as

illustrated in Fig. 3, it is appropriate to allow the design,

maintenance, and upgrade of a component to be a shared

responsibility; that is, there is no single firm or point of

contact with unequivocal responsibility to design the com-

ponent or provide customer support or track and in-
corporate changing requirements (see Fig. 3). For

example, each of the individual links and switches in a

network connection may be independent procurement

decisions.

Combining fragmented control and shared responsi-

bility, a component may be a complex entity indeed,

combining multiple suppliers with multiple owners. This
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may seem excessively complex and best avoided by

narrowing the definition of a component to exclude these

complications. Actually, it is an opportunity because the

hierarchical component architecture can provide a struc-
tured way to coordinate these disparate players, as

discussed in Section VI-B4. With the rising importance

of facilities and applications shared by many entities, these

are increasingly important issues.

C. Opportunities
What are the opportunities for componentization in

the modern ICT context? A number of general industry
conditions have been identified that drive particular firms

and products towards greater modularity and componen-

tization [9] and a number of business advantages and

strategies have been identified [15]. Here, engineering

and related industrial organizational questions are em-

phasized. As we see it, the component concept could and

should enjoy much more widespread appreciation and

adoption, with great benefits. Why?

Managing Complexity: ICT systems are among the most

complex of industrial systems. ICT designs are largely

unconstrained by physical limitations and thus strain the

ability of people and organizations to cope with the

increasing scale and heterogeneity of systems. It is telling

that the most active component research community exists

in software engineering [2], a discipline challenged by
complexity. Like modularity, components provide an in-

creasingly abstracted view of system functionality as we

move up the design hierarchy. Complex-system theorists

have observed the importance of Bstable intermediate

forms,[ or modules at a given level of hierarchy that stay

fixed through an evolution of the system and often

ultimately become building blocks of multiple distinct

systems [12]. These stable forms greatly speed up the

adaptation or evolution of the system and ultimately allow

greater levels of complexity. Examples from biology in-

clude the cell (a structure that is replicated throughout
most organs and tissues) and organs like eyes and livers

(replicated through different animal species). When an

ICT component is upgraded, there is strong incentive not

to Bbreak[ systems already using that component; thus,

the component should be open to extension but not to

change. Thus, components can be described as precisely

the Bstable intermediate form[ of ICT modularity. The

role of componentization in complex systems is discussed
further in Section VI-B4.

Specialization: Modularity offers a division of labor by

system function. Large complex systems are constructed

from different functional requirements, such as for ex-

ample transmission and switching and routing in a

network design. Specialization of firms to different

functions is essential, since often no single firm (even
the largest) can cope with the entire system. Specialization

also allows firms to develop and exploit core competencies

in specific technical areas, such as communications,

databases, and processing. This can be accomplished

through handcrafting in conjunction with outsourcing,

but componentization allows a more disciplined and

structured way to achieve functional division.

Division of Labor by Granularity: A hierarchical definition

of components allows specialization by granularity. At

the finer granularity, some firms can concentrate on a core

technical skill, like software development or semiconduc-

tor fabrication and exercise that competency over a wider

range of products (these are economies of scope) than

would be possible in a vertically integrated firm. Some

Fig. 3. Deployed component can cross multiple control domains and encapsulate subcomponents with distinct design responsibility.
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firms can focus on the coarser granularity, where overall
system requirements and how the system meets end-user

needs are paramount, and the relevant design skill is

composition. Again, this specialization can be achieved

with handcrafting, but componentization has other

advantages.

Supplier Coordination: Shared design responsibility

raises complicated coordination questions. How do we
ensure that the products of different firms are compatible?

How do we ensure that they work together in ways that

achieve desirable system ends? How do we evolve these

systems to meet ever more ambitious requirements, while

coordinating the efforts of multiple firms? In fragmented

control, how are competition and choice preserved

simultaneously with compatibility? Answers must take

into account complex organizational issues like the
appropriate boundary of firms, as well as the appropriate

demarcation between industry cooperation and indepen-

dent firm contributions. A methodology based on hierar-

chical component design offers a systematic and structured

way to deal with these issues, as discussed in Section VI-B.

The design and business challenges differ greatly from

the fine-grain to coarse-grain levels of hierarchy as

cataloged in Table 1. Finer grained components usually
comprise a more homogeneous technology and thus are

amenable to maximum specialization of firms according to

technology competency (semiconductors, software, etc.).

At coarser granularity, components increasingly mix

implementation technologies but can also limit technology

expertise by using assembly rather than implementation.

As to responsibility, a single firm usually sources a finer

grained component, but at the coarser granularity
components may have responsibility shared across firms,

who organize themselves (for example into a consortium).

In the extreme of coarse granularity, responsibility for a

component may reside in an industry as a whole (for

example through an open standardization process). The

motivation for defining a component thus shifts with

granularity. Very fine-grain components mainly support

concise representation of scale, while very coarse-grain
components primarily support industry coordination at

the system level. Medium-grain components are primarily

a structured way for multiple firms to contribute to a
supply chain.

Product Diversity: Components are designed for multiple

uses, and this allows one firm’s product variety to increase

by mixing and matching assembled components in dif-

ferent combinations and configurations [15]. This strategy

also provides design support for versioning (selling

different flavors of products with different functionality
and quality at different price points), an important pricing

strategy [16].

Design Quality: Functional defects, largely borne of

complexity, plague ICT. Componentization results in

fewer distinct designs, and the incorporation of those

widely used designs into more products. This affords

more opportunity to identify and remove defects and a
greatly expanded opportunity to identify defects in actual

usage rather than artificial test scenarios. This can also

result in greater scrutiny of security issues.

Time to Market: With shortening product design cycles

the time required to complete design, implementation,

and testing become important to profitability [17]. By

reducing handcrafting and allowing new products or
versions of old products based on mixing and matching

components, time to market can be reduced [15].

Design Flexibility: A weakness of many current ICT

systems is their rigidity or inadequate ability to track and

evolve with changing needs. Superficially, handcrafting

should be effective at achieving flexibility because it offers

unfettered design freedom. In practice, components have
considerable potential to improve designs in this dimen-

sion. Why? First considerable inflexibility in handcrafting

arises from decomposition because module designs

become tightly bound to initial system requirements.

The shortest route (in terms of time and cost) to

realization is to closely tailor the design to those perceived

system requirements. The result tends to be a design

heavily tailored to present (not future) features and
functionality. How can components help? The component

design methodology in Section VI-B explicitly generalizes

component design requirements, attempting to meet the

needs of multiple products or systems. As a result, the

component is methodologically less tailored to specific

system requirements, and evolution becomes easier.

Economies of Substitution [18]: These occur when
changing needs can be satisfied more cheaply and faster

(from the design and operational perspectives) by repla-

cing or upgrading some components (rather than the

entire system). For example, the makers of enterprise

software business applications realize that componentiza-

tion is necessary to meet the diverse and changing

requirements of their customers in a timely fashion [19].

Table 1 Role of Component Granularity
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Operational Flexibility: The component is an indepen-
dent unit of distribution (Section VI-A5), meaning a

component can be individually replaced and upgraded in

an operational system. This allows a graceful upgrade of

a system with less risk and unintended side effects. For

example, consider the component home theater system.

Individual components (receiver, display, storage, etc.)

are routinely replaced, and new products sometimes add

fresh new capability with no need to replace the rest of
the system.

Design Costs: Increasingly, supplier costs are driven by

the people-intensive parts of the business, like design,

testing, customer support, etc., rather than replication

costs (particularly for software). The significance of design

costs also increases with increasing product diversity and

redesign rates. Assuming an appropriate set of components
is available, a firm can lower these costs by assembly

(possibly including proprietary modules) rather than

handcrafting.

D. Challenges
We should acknowledge that components have dis-

advantages and challenges as well.

Design Costs (Again): If a firm is itself creating and

marketing a component, there are added costs associated

with meeting a more diverse set of requirements and

supporting and maintaining its product for a more diverse

set of uses. These extra costs must be amortized across an

increased number of uses (volume of sales) as well as

higher prices enabled by increased value to the customer

(see Section VI). Since these increased sources of revenue
are uncertain, there can be more risk.

Replication Costs: Components incur overhead, for

example in abstracting interfaces and offering configura-

tion options. This can increase hardware complexity,

processing cycles, or memory, and more generally

replication costs. There may also be adverse performance

implications and increased recurring costs such as power
consumption. These costs are not an obstacle as long as

they are exceeded by the benefits of componentization

described earlier.

Innovation: When component upgrade assumes com-

patibility to existing systems, this can discourage innova-

tion. Fortunately, ICT has rich capabilities such as

metalanguages and mobile code, which can partially offset
this constraint (Appendix A), and componentization does

open up new avenues for innovation at the system level

(Section V-B).

Competition: In the face of competition, firms attempt to

increase market share and extract higher prices through

differentiation from competitor’s products. Component

suppliers and their customers both face challenges in this
regard. Components that have open interfaces (that are

documented and can be used or created without intellec-

tual property restrictions [11]) are attractive to customers

who gain the opportunity to mix and match components

from different suppliers. These components may attract

competition, and there are limited opportunities for

multiple component suppliers to differentiate their

functionality since they must co-exist in the same uses.
Competitive advantage will focus instead on quality, price,

and other characteristics, such as security and scalability.

There may also be the opportunity to offer extended

capabilities (but customers will be aware that invoking

these capabilities reduces their future options to switch

suppliers). Other firms who acquire and adopt components

to incorporate into their products also forego one possible

source of differentiation, since their competitors have
the same components available under similar terms and

conditions. On the positive side, for both suppliers and

customers componentization focuses attention and effort

on improvements and extensions, reducing the tempta-

tion to re-implement what already works.

Vulnerability Borne of Homogeneity: To the extent that

components result in less diversity of designs, this in itself
can expand the scope, subtlety, and impact of defects that

remain. For example, AT&T experienced a severe network

outage attributed to its widely replicated homogeneous

software [20]. Security holes can also be more widely

exploited and are more likely to attract the attention and

effort of crackers in widely replicated components.

E. What Components are Not
Some other well-known common design concepts

overlap components. To understand the component, it is

instructive to address how they differ.

Modularity (Defined in Section II-A): Components are

an ambitious form of modularity as discussed in

Section II-D. In addition, the relaxed assumptions out-

lined in Section III-B are not generally recognized
elements of modularity.

Infrastructure (Elaborated in Section II-F): The compo-

nent emphasizes composition, while infrastructure em-

phasizes extension. Infrastructure is available and known

at application design time, so the application can take

into account full prior knowledge of its interface and

capabilities.
An example of infrastructure is a microprocessor.

Typically, software is designed for a specific microproces-

sor, assuming full knowledge of the details of the

instruction set. This strong coupling of software and

microprocessor argues against any modularity that sepa-

rates software and hardware. An adaptor approach has

been successfully used (see Appendix A). For example, the

Messerschmitt: Rethinking Components: From Hardware and Software to Systems

Vol. 95, No. 7, July 2007 | Proceedings of the IEEE 1481



Java virtual machine [21] is available and widely deployed
for several operating systems, providing a ubiquitous and

homogeneous platform for application software running

across different platforms.

Although an infrastructure is not in itself a compo-

nent, infrastructure can and should incorporate compo-

nents. Think of infrastructure as a distinct large-grain

module, the purpose of which is to serve its Busers,[ who

are in turn the applications (and their developers). This
infrastructure certainly incorporates modularity internally

and thus can incorporate components. In this sense, the

microprocessor and memory chip are (internal infrastruc-

ture) components.

It would be an oversimplification to presume a stable

boundary between infrastructure and applications. Like

natural systems, which grow complexity by composing

new subsystems and systems from existing stable inter-
mediate forms [12], ICT infrastructure grows by adding

new layers of hierarchy (usually called layers), some of

which started life as applications. For example, the Web

began as a simple information access application within a

large end-user organization [22] and has been upgraded

and extended to become an infrastructure supporting a

variety of new distributed applications. This process can

also morph an application component into an infrastruc-
ture component.

Reuse: Technology reuse attempts, in the context of

one project, to design modules that can be reused in other

projects. Those other projects are typically executed

within the same firm, so reuse is an attempt to achieve

economies of scope within a single organization. Signif-

icantly, reuse typically allows the design to be modified in
the context of subsequent projects. Each project that

reuses a module may need to Bfork[ a new design that for

the most part has to be thereafter independently

maintained and upgraded, foreclosing future economies

of scale and scope.

IV. SYSTEM COMPONENTS

Enthusiastic Bcomponent communities[ generally fall

within the hardware and software subindustries and

within application and infrastructure industries. These

are, however, artificial distinctions that limit the potential

of componentization, particularly at the coarser granula-

rities, which naturally incorporate diverse technologies. To

maximize value, component modularity at the design

phase should be considered strictly in terms of function-
ality provided to its system context at the next higher level

of hierarchy. Secondary considerations such as implemen-

tation (hardware or software or assembly) and physical

proximity and the appropriate shared design responsibility

or fragmented control should be subjugated to the design

considerations of internal modularity and addressed at the

next lower level of hierarchy.

Systems components, which abandon the traditional
classification into hardware and software, fall into four

general categories that illustrate the generalizations of-

fered in Section III-B. These combine hardware and

software, or are geographically distributed, or bundle

application functionality with supporting infrastructure,

or combine technology with social elements. These

categories are now described with examples, and compo-

nent design is considered in Section VI.

A. Hardware–Software Components
A hardware–software distinction, forcing components

to be exclusively one or the other, can be deleterious be-

cause the system context demands bothVhardware is

required, at minimum, to execute the software and in-

terface to the physical world. Emphasizing the overall

functionality, hardware–software components are very
natural.

Historically, computing has been deeply molded by a

cost structure that favors the sharing of processing

resources among different applications. This statistical

multiplexing, also prominent in networking, is particularly

efficient when there are varying processing or traffic

demands, which have reduced variation when aggregated

[23]. A negative implication at deployment is acquiring
equipment and software independently and integrating

them, and this creates many challenges for both cus-

tomer and supplier. For example, the supplier wishing to

maximize market opportunity has to target multiple plat-

forms and configurations.

As the cost of hardware has decreased dramatically, it is

increasingly common to dedicate hardware to a single

purpose rather than sharing it. An example is embedded
computing [24], in which a product has software em-

bedded within it for purposes of control or interaction, and

that software is not separable or sold independently. The

increasing ubiquity of broadband networking also en-

courages equipment-software bundling, through the soft-

ware as a service (SaaS) model. When software capabilities

are accessed over the network, the supplier can target a

single uniform platform, and the user is freed of many
responsibilities (such as installation and administration).

Web services explicitly support the componentization of

services, through the so-called service-oriented architec-

ture (SOA) [25]–[27]. Such Web services are hardware–

software components.

This identifies at least two distinct ways to treat ICT

components. One is to lump hardware and equipment

resources as part of an infrastructure and build exclusively
software components that extend this infrastructure.

Another is to encapsulate supporting hardware resources

within the component realization itself, and this is in-

creasingly economic due to declining hardware costs.

A communication link-as-component example is shown

in Fig. 4. The goal is a self-contained link that composes

without modification into a variety of system contexts and
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can be substituted freely without regard to underlying

technology. To accommodate different data rates, and also

physical channels whose rate depends on traffic conditions

(such as a wireless media access layer), the link accepts

variable bit-rate (VBR) source data and has flow control to

adjust the input rate to available resources and also signals

congestion status to the sources (roughly indicating the
impact of this link’s traffic on other traffic sharing

common resources). At the assembly phase, a link can

conduct a negotiation of quality-of-service (QoS) param-

eters (such as delay-reliability tradeoffs) and establish a

service level agreement (SLA). The link also incorporates

reporting functions, such as malfunctions. Note that this

component’s implementation encapsulates not only hard-

ware and software but also a physical communication
medium.

Functions normally thought of as network system

functions (like flow control, buffering, and congestion

control) are included within the link, illustrating that

considerations of functionality in the interest of compo-

nent composition may result in nontraditional forms of

modularity. The inclusion of transceivers at both ends of

the medium, and the medium itself, is also different from
most current practice. At the time a link is replicated, this

may necessitate an internal dynamic assembly of sub-

components, such as the transceivers participating in the

link. In that composition, these subcomponents may need

to negotiate QoS and other parameters. The link also has

a social aspect (Section IV-D) in the form of documen-

tation and various standard processes and practices that

surround its deployment and operation.

B. Distributed Components
A component should not be constrained in physical

centricityVit need not be contained in one chip, one

package, within one rack, or be physically constrained to

one locale.

An example of a distributed component with shared

responsibility and fragmented control is an end-to-end

network connection-as-component, which is dynamically
replicated upon demand with the aid of separate

routing capabilities. It offers services appropriate for

different media and different quality and performance

parameters. The connection has a similar interface to

the communication link-as-component in Fig. 4 but

requires an internal composition of multiple links and

Bswitching[ components. A connection may overlap

control domains and thus must consist of a dynamically
created assembly of subcomponents with fragmented

control.

Why create a connection-as-component and thus have

to deal with the complexities of fragmented control in this

component’s design? The connection is a coherent body

of functionality with strong internal coupling; for ex-

ample, constituent links share common traffic demands

and must jointly participate in achieving QoS parameters
and provisioning an SLA. Useful services may require

opportunistic composition among a connection and other

components. For example, a videoconferencing applica-

tion requires a video codec component at each end. Fi-

nally, whether or not the connection is treated as a

component, some industry coordination process must be

responsible for a reference architecture and protocols for

connection establishment and takedown; the hierarchical
component architecture offers a structured framework

to accomplish this (see Section VI-B).

How does the connection-as-component differ from an

internet TCP/IP connection [23], which has some super-

ficial similarity? TCP as a protocol rather than interface

focuses on implementation. The interface is called an

internet socket, an entity closer to one end of the

connection-as-component. Unlike a socket, which requires
specification of implementation details such as the

protocol, a connection-as-component offers an abstracted

interface focusing on communication needs (quality of

service parameters) and satisfies those needs transparently

to composed components (like codec’s) through access

to a whole suite of transport services that can be im-

proved and expanded over time. A connection encom-

passes both end points and everything between, unlike
the socket. Internally, care is taken to modularize a

connection both vertically (for example transport and

congestion control are treated as separate but interact-

ing components) and horizontally (communication links

and switching functions). This modularity is defined

hierarchically, with no consideration of industrial or

technology issues until the lower levels. Each module is

generalized; for example, congestion control’s interface
does not presume any specific mechanism (such as

TCP) but attempts to capture many or all possibilities.

How is componentization advantageous? Besides the gen-

eral opportunities listed in Section III-C, the hierarchi-

cal discipline affords a structured framework for dealing

with industry coordination issues in a multi-vendor en-

vironment (Section VI-B4).

Fig. 4. Elements of communication link-as-component.
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C. Application-Infrastructure Components
As in the case of hardware–software, a component

need not fall strictly within the application or infrastruc-

ture space. Rather than consider infrastructure interop-

erability as part of a component interface, it can be

advantageous to logically encapsulate supporting infra-

structure within a component. This allows the component

designer complete control over the infrastructure sup-

port and frees the component user from integration of
application and infrastructure. Of course, the component

may be internally assembled from separate infrastructure

and application components. Web service components

are an example of this, in which the application-

infrastructure demarcation is invisible at the service

interface but may appear in internal modularity at lower

levels of hierarchy. The application-infrastructure com-

ponent is related to the information appliance [28] (for
example, the portable music player), the difference being

that the information appliance is a packaged application

while an application-infrastructure component is in-

tended to be composed into an application.

D. Social-Technology Components
At the highest level of technological hierarchy, the

system context is often social. That is, at the top of the
hierarchy the interfaces often are to humans and or-

ganizations [14]. Just as the economy is embedded within

a social context with personal and organizational relation-

ships [29], so are many technological systems, not unlike

how software is often embedded within an equipment

context. The larger system design issue becomes to assign

appropriate roles to the social elements (such as decision

making and exception resolution) and to the technolog-
ical system (such as information management) in ac-

cordance with their respective strengths. Social systems

are subject to a similar analysis of modularity [30] and

separation of state and process [12] as technological

systems. Even professional businesses that emphasize

judgment and expertise (such as legal services [31]) have

more routine aspects subject to systematic or repetitive

processes that can be automated. Thus, there is the
opportunity to use similar methods of analysis and

synthesis for the social as for the technological system

elements.

A social-technology component definition specifically

incorporates presumed processes executed by humans.

The component implementation includes human and

organizational interfaces, presumed processes within the

social context that are coordinated with and easily
compose with the technology, and human-targeted docu-

mentation and training materials. These elements can

fruitfully be considered not only a part of the component

design, but also a part of the component itself. That is to

say, the component realization includes social as well as

technological processes, with similar options for configu-

ration and extension.

An example of a social-technology component is an
insurance policy-as-component. An expansive definition

could include (among other things) the sales and un-

derwriting processes, where human participation is

important. The sales aspect captures information about

the customer’s needs, risk factors and ability to pay, with

explicit support for collection of the needed data from

the customer (often using a sales agent as intermediary)

as well as other sources. The underwriting process relies
on human judgment, informed by a process for ef-

ficiently capturing and presenting relevant information

to an underwriter and capturing his or her insights and

conclusions. The component includes a definition of the

organizational interfaces and processes, including explic-

it flexibility and configuration options, as well as bun-

dled (and often online) documentation and training aids.

In essence, the component incorporates human (or more
complex organizational) entities into its definition.

Suppliers of software applications serving business

processes, driven by customer needs and expectations, are

increasingly recognizing the need for componentization

(an example is enterprise application suppliers [19]).

Although they make implicit assumptions about the human

elements of the processes, they have not yet taken the step

of explicitly incorporating people (and supporting ele-
ments like documentation and training) within the

component scope.

V. HISTORICAL PERSPECTIVE

In this and the following sections, we address the

organizational challenges of invigorating componentiza-

tion in the ICT industries. The component is an old idea,
with its genesis in an even older idea, the interchangeable

part. The latter was a key innovation in mass production

for the munitions and automobile industries of the 19th

and 20th centuries. A brief historical review serves to

illuminate some of the challenges faced in establishing a

component design culture.

A. Interchangeable Parts
By the 1720s, Swedish inventor Christopher Polhem

was manufacturing clocks with interchangeable parts,

although not on an industrial scale [32]. Gunsmith Honoré

Blanc demonstrated the idea in Paris, France, in 1790

and proposed that the French armament industry widely

adopt this method for arms production. Blanc’s imme-

diate objective was a limited one: battlefield repairs

could make the Army more effective. The implications
turned out to be far wider, following decades of further

development and complementary innovations.

Despite the enthusiasm and direction of Napoleon

(himself an artillery engineer), France failed to establish the

interchangeable part in armament production largely due to

resistance or inaction by existing munitions suppliers [33].

A major reformulation of an industrial process is difficult to
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achieve, for numerous reasons. Everyone throughout the
process, from design and manufacture through procure-

ment, is accustomed to the previous way of doing things,

and change requires a change in mindset. Reorganization of

the whole industry, including the organization of the factory

and the introduction of whole new professions and

processes, such as inventory management and accounting,

is daunting. Among firms, there are winners and losers, and

the potential losers are resistant. In an industrial supply
chain, an optimization of overall efficiency requires some to

increase costs (for example, the higher design costs of

interchangeable parts) in order for others to reduce costs

(for example, the manufacturing assembly).

Thomas Jefferson (third President of the U.S.) en-

countered the interchangeable part idea in France and

encouraged the U.S. Army to adopt it. Rather than impose

it on suppliers, for approximately six decades the idea was
the subject of research and development and factory floor

experimentation at the U.S. Armory in Springfield, MA

[34]. A series of incremental advancements and inventions

accumulated and gradually moved the idea toward

widespread practical realization. By 1860, new armament

vendors were organized around this approach, such as Colt

Manufacturing and Smith & Wesson. This illustrates sev-

eral points. First, disruptive innovations (that require
major reorganization of industry and changes to business

plans) often require considerable precommercialization

research and development before they are ready for

commercial use. It is difficult for profit-maximizing en-

terprises to make such an investment, so it is more likely

to be government funded. Second, it reinforces the role of

new companies in bringing such innovation to market.

Third, there are winners and losers, and potential winners
must take affirmative action to overcome inevitable in-

action or resistance by losers, or new players need to

displace the losers.

All these issues apply to ICT, but a fourth lesson is

especially relevant. The culture of engineering design

methodology (perpetrated in part through the educa-

tional system) interjects considerable inertia. As one his-

torian commenting on France’s experience asserts [33]
B. . .engineering rationality is not a set of timeless abstrac-

tions, but a set of social practices which have emerged

historically.[ It is worth reflecting on the degree to which

current ICT design methodologies have a Bcultural im-

print,[ as opposed to being based on fundamental prin-

ciples or unavoidable physical constraints. A handcrafting

design methodology in ICT may be preordained by the

difficulties of componentization or may simply have
evolved historically as constrained by older generations

of technology or as the path of least resistance. Our thesis

is the latter.

B. Combinatorial Innovation
Once a set of interchangeable parts is available, there

are many opportunities for innovation in assembling them

in novel and unexpected ways, a phenomenon that has
been termed combinatorial innovation [35]. Industrial

history is ripe with examples, such as the first successful

flying machine constructed by the Wright brothers largely

from parts drawn from the bicycle (wheel), kite (light-

weight structures), automotive (engine), and marine

(propeller) industries. Significantly, the availability of

parts (or components) significantly reduces the barriers to

systems-level innovation, reducing the skill level and
needed financial and organizational resources. Combina-

torial innovation is and can be even more beneficial to ICT

which, as mentioned in Section I, is experiencing notable

barriers to systems-level innovation.

C. Fitting
Today’s vision of a straightforward assembly of

interchangeable parts did not reach fruition until 1913.
Earlier parts were remachined in order to match and

assemble with other parts; this is called fitting. Fitting

prevented realization of the full potential. The division of

labor was not fully realizedVassembly required skilled

craftsmen and was itself partially a handcrafting enter-

prise. Both the skills and tools required for fitting were

largely absent in the field.

Fitting is pervasive in ICT today, often arising under
terms such as Bprogrammability[ or Bconfiguration,[ or

Bintegration.[ Programmability extends functionality to

fit a part (such as a microprocessor) into its system

context. Configuration entails less work than program-

ming but also confers less flexibility since useful con-

figuration options have to be anticipated in the design.

Integration of subsystems frequently involves not only

configuration and assembly, but also modification and
extension. Another example of fitting is software reuse,

which usually allows modification of old modules to fit

new uses (Section III-E).

The assembly line was the major turning point. It

structured the assembly of parts into a sequential process

in which each assembly step remained stationary while the

partially assembled product moved down the line (the

Bpipelining[ of digital-system architecture.) Elemental
forms of the assembly line go back to the early 19th

century England, but the concept was perfected by Ford

Motor Company in 1913 [34] and in 1926 Henry Ford

famously announced to the world [36] BIn mass production

there are no fitters.[ The efficiency of the assembly line

required a consistent and nearly equal time for each

assembly step and was thus incompatible with fitting. This,

in turn, required much greater discipline in the design and
production of parts, making them truly Binterchangeable

without modification[ for the first time.

History suggests that fitting is difficult to stamp out and

takes research, commitment, time, and investment. The

rewards can be profound, as evidenced by the historical

examples of combinatorial innovation and by the absence

of fitting in today’s mechanical industries.
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The assembly line introduced a new challenge, which
was production volume easily outstripping customer

demand. The early General Motors Corporation through

marketing innovations like product variety and differen-

tiation and frequent model changes addressed this most

effectively. These marketing innovations required consid-

erable production flexibility, and the interchangeable part

played a crucial role in reducing design and retooling costs

by increasing commonality among a set of superficially
distinctive designs. Flexibility in design is certainly a big

issue for ICT too, particularly in applications serving busi-

ness, and componentization should assist as long as a

certain vision of future needs is incorporated into a com-

ponent design.

D. Standardization
A later major innovation in the automobile industry

was parts interchangeable across different manufacturers,

creating a supply chain. This moved the industry to a

division of labor in which firms (not individual crafts-

person’s or divisions of a factory) specialized in the

production of particular types of parts. A related innova-

tion was a Bplatform[ or common framework within which

interchangeable parts articulated with one another,

requiring industry consensus on general design issues
(like how the steer the car). This platform is analogous to

a reference architecture in ICT. Industry standards

provided the coordination among assemblers necessary

to share common parts suppliers. The first successful

industry standards in automobiles were not promulgated

by firms or by consortia of firms, but by a professional

organization, the Society of Automotive Engineers (SAE).

(There are earlier examples of industrial standardization,
such as the railroad gauge and screw thread [37], [38].)

The largest companies were lukewarm, but the smaller

companies encouraged and supported standardization

because this allowed them access to technology and

designs that they could not otherwise afford. Similarly,

componentization in ICT would likely encourage more

small firms. Standardization in autos was promulgated

by an outside engineering professional organization,
whose members had more of an industry perspective

than the managers of firms in the industry. This suggests

that activism on the part of government and professional

organizations like DARPA, NSF, IEEE, and ACM would

be fruitful in ICT.

One might conclude that an industry like automobiles

moves inevitably from handcrafting to interchangeable

parts and then to a supply chain with increasing spe-
cialization, but history does not bear this out [37]. We have

already observed that componentization has languished

in the ICT industry. In the automotive industry there

were 88 manufacturers in the U.S. by 1921, and this

proliferation was encouraged by the availability of in-

terchangeable parts from independent suppliers. How-

ever, the industry experienced consolidation, probably

not as a result of design and production efficiencies per se,
but as a result of economies of scale, branding, and the

strength of dealer and service networks. While industry

standards in areas like lubricants and fuels are prominent

to this day, standards for parts like hinges and steering

wheels have largely disappeared. While outsourcing of

parts suppliers have consistently played an important

role, the few remaining auto manufacturers have alter-

nated between greater vertical integration and divestment
of their internal parts production (Delphi from General

Motors and Visteon from Ford Motor are recent

examples).

The boundary of the firm is explained in economic

terms by the relative transaction costs for internal

coordination as opposed to market purchases [39].

Componentization eliminates most coordination costs

among component suppliers and thus tends to move an
industry toward smaller firms and a supply chain, all else

being equal. On the other hand, other factors can favor the

consolidation of an industry into fewer large firms, and if

this occurs it discourages componentization, in part

because componentization encourages competition from

smaller firms (as discussed in Sections III and IV). Our

view is that the benefits of componentization in ICT, such

as dealing with large-scale system complexity and the
opportunities for combinatorial innovation, as well as

pressure applied by customers and users, can make

componentization compelling to the largest of firms.

VI. DESIGN FOR COMPONENTIZATION

The previous discussion of the opportunities for compo-

nentization begs the question of where components come
from. This is the issue of component design. The

discussion surrounding Table 1 concludes that the

component can play an important role over a range of

granularities. However, the design objectives and meth-

odologies are quite distinctive over this range. Fine-,

coarse-, and medium-grain designs are thus discussed

separately.

A. Finer Grain Components
In the categorization of Table 1, finer grain compo-

nents are distinctive in that they are the responsibility of

a single firm, which typically faces competition from

other firms offering a similar component. Rather than

discuss component technology (such as tools and plat-

forms), the emphasis here is on the sources of value,

based in part on [11]. Component designers should be
acutely aware of value as the major driver when design

decisions and tradeoffs are faced. When evaluating any

module for component-like characteristics, these sources

of value can also offer insight into shortcomings and pos-

sible improvements.

Since the reference architecture that defines the sys-

tem context of a finer grain component is the coarser grain
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component at the next higher level of hierarchy, discussion
of architectural design is deferred to Section VI-B.

1) Multiple Uses: Components are designed and sold for

multiple uses. What sources of value does this impart?

Economies of Scale in Design: The cost of designing a

component is considerably larger than an element de-

signed for a single specific use, principally because un-

derstanding and anticipating multiple uses takes more
time and effort, not to mention the additional costs of

marketing and sales and support associated with multiple

customers for the design. Fortunately, those larger costs

can be amortized across a larger number of unit sales. This

balance only makes economic sense in cases where the

number of uses is large enough to more than offset the

higher costs. This is economies of scale, lower unit costs

as unit volume increases.
Economies of Scale in Replication: If a component is

fabricated or manufactured, multiple uses results in larger

production volume, spreading various costs over larger

volume. However, as with design, the generality of a

component may increase its unit fabrication or manufac-

turing cost. Thus, to make economic sense the customer

willingness to pay must account for this higher unit cost.

In modern ICT, there is another opportunity that is
subtler: a component design can be specialized as it is

replicated. That is, a component design can embody

great generality, but as that design is translated (in au-

tomated or semi-automated form) into a concrete real-

ization, extraneous features that might otherwise lead to

higher replication costs can be eliminated. Thus, no

value is lost through greater context independence in the

design than the realization, especially if the translation
is automated.

Lower Barriers to Entry: A component supplier seeks

and benefits from the larger market and sales volume

inherent in multiple uses. The consumers (buyers) of a

component seek lower design or manufacturing costs than

they could achieve by internally designing and manufac-

turing. The more they can rely on components in a new

design, the more their barriers to market entry (such as the
lengthy development time and cost) are reduced, but also

the lesser their opportunity to differentiate products from

competitors. Shortened time to market is a particularly

strong motivator, since much of the profitability of a

product accrues before competition is able to arise.

Other sources of value include flexibility, quality, and

lowered vulnerability (Section III-C).

2) Composition: Composition achieves a system’s higher

purpose by assembling two or more components that

successfully interact and their functionality is mutually

reinforcing. Opportunistic composition achieves this goal

in spite of the components being designed without specific

knowledge of one another. What are some sources of

value?

Mixing and Matching: Opportunistic composition
leads to many opportunities to mix and match compo-

nents, achieving different system functionality, cost, or

performance characteristics.

Competition: Mixing and matching offers more

supply options to the customer and greater competition

among suppliers. It shifts the granularity of competition

from the system level to the component level.

Component Diversity: The greater the diversity of
available components, the more opportunities there are for

composition and the greater the potential value.

Other sources of value include division of labor,

lowered barriers to entry, reduced time to market, and

greater system flexibility and diversity (Section III-C).

3) Context Agnostic: A component design is context

agnostic when no specific system context is used to define
its design requirements and parameters. This is a matter of

degree, since only very fine-grained components (like

transistors) can be almost completely agnostic.

Agnosticism is superficially similar to multiple uses but

more powerful because the multiple intended uses of a

component could still be quite context specific. For

example, there might be several systems suppliers of

GSM cellular network equipment and a number of service
providers who purchase this equipment and deploy GSM

cellular networks. A component designed to support those

multiple deployed systems is multiple use but relatively

context specific because it targets a voice telephony

application. A component designed to be incorporated

into any network (GSM, internet, video distribution or

other) is relatively context agnostic.

System Experimentation and Diversity: Context agnos-
ticism is attractive to a component supplier because of the

larger market opportunity. But to the larger society and

end users, it is especially attractive because it lowers the

barriers to deploying a greater diversity of systems. For

example, a more componentized networking technology in

which the components were relatively context agnostic

would encourage greater market experimentation with

different networking system concepts and presumably
better and more diverse (and yet interoperable) networks

as a result.

4) Encapsulated: A component is encapsulated when it

is designed to be used Bas is,[ without modification. This is

the elimination of fitting (Section V-C). Generally, this is

achieved by presenting a component interface to the

outside world, an interface that offers a specific well-
documented set of services and capabilities, but which is

designed to hide internal implementation details. For a

physical component, encapsulation may be enforced

through impenetrable packaging, but often encapsulation

is enforced by licensing terms and conditions or intellec-

tual property rights (trade secrets and copyright). How is

encapsulation valuable?

Messerschmitt: Rethinking Components: From Hardware and Software to Systems

Vol. 95, No. 7, July 2007 | Proceedings of the IEEE 1487



Customer Costs: Pure assembly eliminates the time
and cost of design or design modifications.

Multiple Uses: Encapsulation enforces a design

discipline that enhances the multiple use property. Where

an encapsulated component does not fully meet the needs

of a specific use, the customer communicates new features

and requirements back to the component supplier. As the

supplier incorporates these additional features and re-

quirements, all current and future users can benefit from
these enhancements. Thereby, the effort of a single user,

together with the supplier, provides value to the entire

community of adopters and further expands the use

opportunities.

Economies of Scale in Upgrade and Support: When

users modify a component for their own purposes, a new

design for that component has been Bforked.[ Thereafter,

that new design cannot benefit easily or fully from future
maintenance and upgrades, because there are now two

inconsistent designs to deal with. Also, the component

supplier will subsequently find it difficult or impossible to

separate features or defects introduced in the original

design (as opposed to the user modifications). Thus, en-

capsulation adds value through efficiencies in user support

and through the lowered friction in the propagation of

upgrades and fixes through all deployed components.
Separation of Responsibility: Encapsulation enforces a

separation of responsibilities between supplier and user of

a component, and more importantly among the suppliers

of distinct components. The supplier is fully responsible

for the design and the implementation and can be held

accountable by the user. Absent encapsulation, suppliers

of components will generally not offer user support, and

as a practical matter cannot offer a warranty that guar-
antees capabilities or performance parameters. Encapsu-

lation provides value to users through this shift of

responsibility to the supplier.

Separation of Uses From Technology: Since the user of

an encapsulated component is freed from awareness of its

implementation, the adopter can focus completely on the

uses of the component rather than the technologies

incorporated into its implementation. The user is freed
from the need for technological expertise, and the supplier

of the component is freer to change technologies and

implementations in the upgrade process transparently to

the uses.

5) Independent Unit of Deployment: A component is an

independent unit of deployment if it is acquired, pro-

visioned, and installed independently of the other
components and elements of the system. This is valuable

for several reasons.

Extendibility: If a component can be added to an

already operational system, the functions or capabilities of

that system are extended.

Independent Upgrade: If a deployed component can

be replaced by an upgraded version without adversely

interrupting or impacting its system context, the system
can be upgraded incrementally without wholesale upgrade

of the entire system. This may extend the functions or

capabilities of the system, or it may repair defects. It also

may entail lower risk than wholesale upgrade and can be

reversed more easily and quickly if problems arise.

Serviceability: Particularly applicable to a physical

component, repair of a system in the field is facilitated if

a single malfunctioning component can be replaced.

6) Design Tradeoffs: There are inevitable disparities

among design objectives, and inevitably they must be

traded one against another. Any existing or proposed

component can be compared against the value metrics,

revealing what tradeoffs have been chosen and how its

value may have been affected.

For example, composition and context agnosticism are
in opposition. Composition requires complementarity of

function and purpose, but complementarity is distinctly

contextual. For example, in a network, routing and

switching are complementary (routing configures the

switching), but this complementarity occurs within a

specific context (the network). Thus, for these specific

functions Bmultiple uses[ should be qualified to read

Buses in multiple networks.[
Another tradeoff occurs between multiple uses and

encapsulation. The discipline of not allowing modification

of the design in a multiple use context implies that the

needs of the multiple uses have to be more fully

anticipated. This is certainly desirable, but pragmatically

the ability to modify or extend the design will expand the

feasible uses. As well, expanding the capabilities of the

component in order to specialize it to particular uses may
require choosing among a set of configuration options,

a relatively benign form of fitting.

B. Coarser Grain Components
Coarser grain components can serve industry and firm

coordination purposes as cataloged in the discussion

surrounding Table 1. From an industry perspective, these

components may serve a coordination function to deal
with multiple responsibility and fragmented control

(Section III-B). From a design perspective, these compo-

nents define the system context that motivates a reference

architecture for the finer grain components that are

encapsulated within. The design of coarser grain compo-

nents is thus more about the design of componentized

architectures and systems than about the design of

components per se. Thus, this section emphasizes the
design of reference architectures and industry processes

that might surround the component as an industry

coordination mechanism.

Many of the sources of value for finer grain com-

ponents discussed in Section VI-A are less relevant to

coarser grain components and should therefore be ap-

proached with caution. For example, the system at the top
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level of hierarchy need not compose with anything.

Toward the top of the hierarchy, components tend to

become more context specific. A coarse-grain component

whose design is the responsibility of an industry standard-
ization process is certainly not encapsulated, and many of

the value generators of encapsulation (like warranty and

customer service) are irrelevant.

1) Top-Down and Bottom-Up: Understanding of compo-

nentized system design is aided by comparing two design

styles as illustrated in Fig. 5. When a coarse-grain com-

ponent or a system is designed by component assembly
as on the right, those components are presumed to

already exist and their design cannot be modified. The

starting point for design is thus a set of the system

requirements and a hopefully extensive and rich catalog

of components that are available. The emphasis is upon

uncovering relations among available components and

possibly choosing among configuration options and

adding new extension modules. In composition, the
range of feasible systems is constrained by the available

components, but that range is greater if components are

available in variety and are themselves flexible and

configurable.

In contrast, in design by decomposition on the left side

of Fig. 5 the module definition and design flow directly

from the system requirements. Those requirements are

systematically decomposed into a supporting modularity
by recognizing distinctions among functions (loose

coupling) as well as natural grouping of functions

(cohesion). (The Brelations[ and Bdistinctions[ terminol-

ogy is drawn from [14].) That modularity, and the

capabilities of the respective modules, follows directly

from system requirements.

2) Deconstruction: Where does a reference architecture
come from? In this section, this is addressed from a design

perspective and in Section VI-B3 from a process perspec-

tive. The architecture is the outcome of a special form of
decomposition called deconstruction (terminology used by

[27]). Deconstruction followed by component realization

followed by composition is necessary [14] to achieve a

concrete system realization as illustrated in Fig. 6. The

starting point for deconstruction is a set of system

requirements, but these requirements characterize an

abstracted class or category of systems rather than a single

concrete system, a general context rather than a specific
set of requirements. Decomposition to define an appro-

priate modularity is followed by generalization and

reasoning about each of the modules, which attempt to

define these functions in the most general way possible. In

the case of each module, the reference architecture defines

functions and interactions, anticipating that the goal is to

later turn each module into a component.

The reference architecture has some similarity to the
successful concept of a design pattern in software en-

gineering. This is a reusable architecture that solves a

class of design situations and can relate to a software

component in an analogous way [40].

Again, a communication network can be used as an

example. Digital cellular, the Internet, and hybrid fiber-

copper television distribution are recent examples of

network architectures developed by decomposition from
narrower requirements. The componentization alternative

develops a reference architecture appropriate for a wider

set of system requirementsVthe wider, the better.

Deconstruction begins by identifying Bthe basic functions

of any network,[ perhaps including connections, flow

control, congestion control, authentication, billing, and so

forth. Some carefully chosen limiting assumptions are

probably made at this stage to make this task feasible,
such as variable bit-rate connection-oriented transport.

Then, we ask which of these functions relate and interact,

and how?

Fig. 6. Component methodology follows a hybrid of deconstruction

(a disciplined form of decomposition), followed by composition.

Fig. 5. Two diametrically opposed system design methodologies:

decomposition and composition.
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The next step is to generalize and reason about all of
these functions, yielding functional definitions that satisfy

a wide range of system requirements. For example, what is

the most expansive abstract view of congestion control,

one that captures a significant range of the known

possibilities (if not all)? The goal is to identify a set of

congestion control options and attributes that can satisfy a

wide range of system requirements.

A reference architecture at the top level is developed
from overall system objectives and requirements. As a

conceptual framework, it is not constrained to align with

existing technologies, responsibility, control, or physical

proximity. A hierarchy is created by iteratively decon-

structing each component using the next higher level of

hierarchy as the system context. At lower levels of hi-

erarchy, the deconstructions will begin to take account of

concrete technological, physical, and market realities. For
example, a deconstruction of a network connection-as-

component into communicating link-as-components and

switching functions can identify subcomponents that not

only enable opportunistic composition, but also are in

addition reasonably aligned with the boundaries of existing

firms interested in those respective business opportunities.

3) Industry Processes: What industry processes might
yield a reference architecture? There are numerous

possibilities. One observed in practice is an evolutionary

process emanating from a proprietary system in which one

or more suppliers choose (or market forces dictate) an

Bunbundling[ of the modularity, selling the modules

separately to other system suppliers, choosing to outsource

some modules to other suppliers, or in the extreme

choosing to become strictly component suppliers [10]. In
each of these cases, the prior system architecture, derived

via a proprietary decomposition from system require-

ments, becomes the basis for the reference architecture.
Legacies and anonymous market forces drive this approach

and for this reason usually do not incorporate to a

significant degree the Bgeneralization and reasoning[ step

in the deconstruction of Fig. 6.

Deconstruction has the explicit goal of a reference

architecture with as large a nonspecificity of system

requirements as is practical. This is usually not something

that a single supplier firm, which is focused on near-term
product opportunity and profits, is likely to undertake.

Rather, there are two main possibilities individually or in

combination: supplier industry cooperation and end-user

industry cooperation.

In the first option, a group of suppliers may undertake

the definition of the reference architecture as part of a

cooperative industry effort. This may include considerable

research, prototyping, and experimentation. The Internet
Engineering Task Force (IETF) is an example of a long-

term cooperative effort among supplier firms and network

researchers that incorporates research and experimenta-

tion into an architectural and protocol standardization

effort [10], [41]. Fig. 7 illustrates the stages of an open

standards process of this nature. Although the outcome is

intended to be a set of approved standards, the interme-

diate stages make up essentially an industry-cooperative
architectural design process, including intermediate mile-

stones with specifications, prototype implementations, and

experimentation.

The second option is a reference architecture initiated

and driven by end-user organizations. End-user industry

cooperation is driven by the information asymmetry be-

tween suppliers and end users: Suppliers are better able to

make technological innovations, but end users possess
domain expertise and more thoroughly understand their

own needs, organizations, and processes [42]. One

Fig. 7. Phases of open standards process (Source: Ed Walker of IMS Global Learning Consortium and used with permission).
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response could be end-user organization participation in

open standards processes such as Fig. 7. The IETF il-

lustrates this and was even initiated by ARPA acting on

behalf of the U.S. military, itself an end user. Even more

interesting is a process driven by end-user cooperation in

the interest of ultimately obtaining better solutions from

their suppliers. This type of end-user innovation and

cooperation is Bfrequent, pervasive, and important[ across
many industries [42].

An example of end-user architectural control is the

learning management system, which provides various

capabilities to instructors and students in a university

course with basic top-level modularity shown in Fig. 8.

Universities dissatisfied with monolithic commercial

solutions have tried internal development of these

capabilities, but the large recurring costs of maintenance
and upgrade and duplication of effort are unattractive to

universities and the proliferation of content management

standards is unattractive to academic publishers. There-

fore, a group of universities joined an open standards

and community software development process called the

Sakai Project [43] with the goal of establishing a ref-

erence architecture and a set of component prototypes

consistent with content representation standards. Uni-
versities are contributing development resources to

prototyping efforts and using their own courses to gain

experience with students and instructors and refine re-

quirements. The participation of commercial firms in

contributing components is welcomed, either in the

prototyping and experimentation stages or later.

4) Complex Systems: The introduction asserted that

componentization has a role to play in the evolution of

large complex systems like a communication network or

enterprise business application. How? Many of these
complex systems have to be designed and operated in a

complex environment like that of Fig. 3. The industry

players face difficult strategic questions like the boundary

of products, what complementarities are needed and who

will supply them, and when to standardize or offer open

interfaces inviting extensions or seek proprietary advan-

tage. The appropriate degree and scope of standardization

and related tradeoffs between industry versus firm-level
activity abound. Viewed abstractly, these are all questions

of responsibility and control (Section III-B) and how

they can be successfully partitioned within a dynamic

market economy. Who is responsible for what, and in

particular how does responsibility partition among indi-

vidual firms or multiple firms or an industry? Some

industry and customer coordination is essential, but how

much and where? Hierarchical component architectures
offer a structure within which responsibility can be sys-

tematically partitioned, while the market resolves re-

maining ambiguities.

Fig. 8. Modularity of a learning management system at top level (Source: Geoff Collier of Eduworks Corp. and used with permission).
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Consider a component at a given level of hierarchy. At

each and every level of hierarchy, the initial focus during

deconstruction at that level should be on functionality and

reasonable ways to modularize that functionality without

regard to responsibility, control, or implementation issues.

Once a principled and reasoned modularity is established,

the focus can turn to responsibility, taking into account

the current industrial organization, business models, core
competencies, etc. At any hierarchical level where the

deployed component may reasonably have fragmented

control due to market structure, the internal architecture

of that component is clearly the responsibility of the

industry collectively (or more likely a subset of interested

firms in the industry) rather than individual firms. There

will have to be multiple firms contributing subcomponents,

because otherwise a single firm claiming responsibility
would be in a market monopoly position (all co-owners

of the deployed replica would be forced to source from that

same firm). In this case, industry cooperative mechanisms

(like a standards organization or consortia or task force) can

be established to assume long-term responsibility for this

component’s internal reference architecture and manage its

evolution. The definition of an internal reference archi-

tecture would proceed on the same basis, with decon-
struction based on principled and reasoned decompositions

(to the extent that politics can be removed from the

process). At some point in the hierarchy, subcomponents

will revert to the simpler single-control case. Architectural

standardization is not an obstacle to (and indeed enhances)

direct competition among suppliers and customer choice at

the subcomponent level.

At hierarchical levels where single control of all de-

ployed realizations can be assumed (as in the components

of a insurance policy application of Section IV-D), two

options are available, both operating with a common

context defined at the next higher level of hierarchy. One
firm (typically a large one) may choose to take responsi-

bility for this component, creating the best implementa-

tion it can (such as doing a handcrafted implementation or

assembling acquired components) and offering the com-

ponent for sale. Alternatively, a set of firms commercially

interested in this component (typically smaller ones) may

choose to cooperate (such as through an industry

consortium) in taking responsibility for their own internal
reference architecture, with different firms contributing

subcomponents. The beauty is that both these options can

be pursued in parallel and compete with one another in the

market. In this fashion, groups of smaller firms are able to

complete with larger firms by joining forces, with overall

coordination of responsibility occurring through mainte-

nance and upgrade of the hierarchical reference architec-

ture. Other benefits of componentization discussed
elsewhere (such as flexibility and evolution) also apply.

A simple example is shown in Fig. 9. A network

connection-as-component is deconstructed into a compo-

sition of concatenated communication link-as-component’s

Fig. 9. Deconstruction of connection-as-component illustrating domain of fragmented control.
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(and switches, etc.), and each link is further deconstructed
into a composition of transceiver’s, repeaters, transmission,

etc. The domain of fragmented control includes the con-

nection (because it may span multiple service providers)

and the links (because some may terminate in different

service providers). On the other hand, switching-like com-

ponents may be assumed to fall within a single control

domain. To preserve the independence of the control

domains in choosing their respective suppliers, responsibil-
ity for the connection and link components are assigned

to industry processes (Section VI-B3), and these compo-

nents are constrained to be a pure assembly of sub-

components with opportunistic composition of these

subcomponents the primary architectural goal. Subcom-

ponents of the link can in turn each be assumed to fall

within a single control domain, so responsibility for their

design is left to individual firms and market forces.
In what ways does this approach improve on current

industry practice? First, it is not a radical departure since

hierarchical modularity is at least implicit in present

design practice, so getting there from here is not out of

the question. By making hierarchical component archi-

tecture explicit and universal, with one goal the creation

of generic Bstable intermediate forms,[ it holds out hope

of containing perceived system complexity. By explicitly
defining the scope of industry versus individual firm

responsibility in a structured and principled way, it max-

imizes the scope of competition and market forces while

preserving customer choice in a fragmented control en-

vironment. In other words, it provides a systematic

framework for splitting responsibility between standard-

ization processes and individual firms. By defining open

component architectures down to the level of individual
firm responsibility, it preserves the ability of large and

small firms or industry consortia to compete with one

another in the market while contributing complementary

technologies in a structured and coordinated way. Finally,

it captures all the opportunities for componentization

discussed in Section III-C.

Of course, this presents an idealized view, and reality

will inevitably be far messier. Getting all industry players
on the same page is never feasible, and commercial

interests will sometimes trump the best of intentions.

Nevertheless, a hierarchical component architecture

could provide a principled framework around which to

organize industry-level processes like standardization and

community development, one that would offer significant

advantages.

C. Medium-Grain Components
In the taxonomy of Table 1, the primary role of

medium-grain components is architectural support for a

supply chain. Thus, the dominant design methodology is

neither deconstruction nor component implementation,

but rather internal assembly of components acquired from

other companies. Suppliers of medium-grain components

are primarily Bintegrators,[ and their viability depends
on a vibrant variety of components available for purchase

[2], [44]. For this reason, component markets are dis-

cussed next.

VII. COMPONENT MARKETS

Finer grain components that can be sourced by a single

firm are a natural to be bought and sold in the market,
rather than used as an internal design and development

strategy within a single firm.

Technology reuse is a strategy typically followed within

a development organization to make more efficient use of

development assets (Section III-E). There exist notable

reuse successes, such as Toshiba in software engineering

[45]. In contrast, components developed for proprietary

use within a firm are difficult to achieve in practice.
Managerial incentives emphasize delivering projects under

budget and on time, and components are more expensive

and take longer to develop. Future cost savings or other

benefits are difficult to quantify, and incentive systems

that take these factors into account are difficult to es-

tablish. More fundamentally, the limited uses of a

component available within a given firm are significantly

less likely to justify the higher costs and longer develop-
ment times, even compared to reuse. Notable exceptions

can occur when the benefits of componentization are so

compelling that these obstacles can be overcome. For

example, suppliers of enterprise applications must meet

the needs of multiple customers with differentiated needs

evolving over time, a challenge for which componentiza-

tion is ideally suited [19].

On the other hand, the component value measures of
Section VI-A are entirely consistent with a component

sold and bought. Componentization reduces coordination

costs among suppliers, thereby favoring industry fragmen-

tation into smaller firms as predicted by the economic

theory of the firm [39]. A component seller seeks larger

revenues, which is consistent with making its products as

context agnostic as possible and seeking multiple uses.

The larger revenues that result can justify the higher
development and maintenance costs [18]. Encapsulation is

compelling for any product or design that is sold, as

outlined in Section VI-A4. Composition by assembly

reduces design costs and more importantly reduces the

time to market and the ability to track user needs more

rapidly. When new uses define new requirements, those

are fed back to suppliers who upgrade components over

time, and other uses and customers benefit from those
enhancements. There is a strong incentive for the supplier

to avoid Bbreaking[ existing uses with those enhance-

ments, which likely reduces its market or upsets its

customers, and this contributes to the Bstable intermediate

form[ characteristic. The component as an independent

unit of deployment avoids many coordination and trans-

action costs among suppliers, since they can act relatively
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independently and customers can deal with suppliers
independently.

An important qualification is that the market is an

anonymous force that is unlikely to perform the principled

deconstruction that is necessary for a well-functioning

larger grain system solution. For this purpose, industry

cooperation in some form is advantageous as discussed in

Section VI-B3.

There are other advantages accruing from the inter-
actions of components and a market. The market has

proven to be a great tamer of complexity [46]. Markets

favor designers and vendors who make their products

easier to adopt and use and otherwise have characteristics

that encourage widespread adoption. Among these char-

acteristics are successful hiding of internal complexity,

credible roadmaps for future enhancements, and a track

record of seamless enhancement without breaking exist-
ing uses.

While economics offers insights into industrial organi-

zation [39], the impact of new technologies is a complex

issue involving many considerations [47]. In a component

market, component interfaces must coincide with the

boundary of firms. This raises the question of whether

firms define component boundaries, or component

boundaries define the boundaries of the firms. Like natural
complex systems, the answer is likely to be complicated.

Components in a market will evolve chaotically, with new

hierarchical layers built on existing layers. Firms experi-

ment with new components, often constructed from

existing proprietary modules that benefit from test in

actual use. The market applies selection criteria that favor

some solutions over others [12], in this case based on

feedback from customers and economic metrics like
revenues or profits. Successful components can build on

their success through greater investment in maintenance,

customer service, and upgrade, further enhancing their

future prospects.

The nascent condition of today’s market in components

is a significant barrier to the component methodology.

Industrial history suggests that establishing these markets

is not easy, and sometimes there can be backtracking
(Section V). Existing technology suppliers may not jump

on the component bandwagon as enthusiastically as hoped,

as this is a major change to established business models

and puts more power in the hands of customers, so the

activism of startup companies may be beneficial. A long-

term investment in research into components is necessary,

as there is certainly much to be learned regarding tech-

nology, tools, and methodologies. The involvement and
activism of professional organizations would be beneficial.

Most importantly, the ultimate customers of components

are the ones who stand to benefit the most from a viable

component market. They (or governments acting as their

proxies) need to become activists, through supporting

research and setting up industry-level processes. Such

activism on the part of users has been commonplace and

effective in similar situations [42], just as the active in-
volvement of the U.S. Army was instrumental in establish-

ing the interchangeable part as an important fixture in

industrial production (Section V-A).

VIII . CONCLUSION

Recall the assertion [33] that B. . .engineering rationality is

not a set of timeless abstractions, but a set of social

practices which have emerged historically.[ To what ex-
tent is the atrophy of componentization in ICT a result of

inattention or under-appreciation, as opposed to technical

difficulty or economic obstacles? Certainly, componenti-

zation will require a major shift in design culture within

the ICT industries, driven in part through changes to

engineering education. It will also follow from (or more

likely drive) changes in industry organization to create a

component supply chain and require additional actions by
industry as a whole in defining context-specific reference

architectures. These changes will happen more quickly

with the activism of end-user organizations or government

research funding acting as their proxy.

We do not claim that componentization is a panacea.

Details such as specific modularity design and industry

processes and component markets matter, and some

market participants may actively fight change. Compo-
nents are nevertheless a significant opportunity. Hope-

fully, this paper will stimulate a dialog that leads ultimately

to more successful ways of constructing large complex ICT

systems that take into account the realities of industry

competition, cooperation, and market forces.

There are many unanswered questions regarding

componentization, many of them nontechnical as well as

technical in nature. Does componentization apply equally
well to emerging as well as mature product categories?

How does a more vibrant market in components arise, or

how can it be stimulated? How well can both suppliers and

customers differentiate their products and services when

they rely more on components? What is the role of

community development methodologies (often called

Bopen source[) in componentization? These and other

questions will hopefully be answered through both con-
ceptual research and market experimentation. h

APPENDIX
The richness of ICT technology makes it much more

flexible than other technologies. What follows are some

capabilities that can be exploited to make ICT components
more functional and flexible.

Separation of Manufacture From Functionality: Arguably

the most powerful idea to emerge in ICT is software, which

allows functionality to be deferred at the time of man-

ufacture. Software can be distributed over the network,

allowing functionality to be added or modified or extended
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later. This capability can be used to maintain or upgrade
deployed components.

Translation of Design to Realization: A component design

resides in a computer-aided design (CAD) system. It is

important to distinguish this design from a component

realization (a deployable representation of the compo-

nent). An automatic translation step can convert design to

realization, and many configuration options can be built
into the design and implemented in the translation. This

concretely addresses one criticism of the component,

which is increased cost or decreased performance in its

replication (Section III-D). Since a component design

will typically incorporate the union of the capabilities

needed across multiple uses, in any specific use some

component capabilities may be unneeded. These can be

eliminated during translation.

Technical Capabilities: ICT components can be complex,

self-aware, and communicate over a nearly ubiquitous

Internet. This offers opportunities not available in any

other technology, as for example automatic upgrades and

remote usage monitoring and license enforcement [46].

Incorporating Physical Connections: The communication
link-as-component of Section IV-A encapsulates a physical

medium. Similar situations occur often, as for example the

computer universal serial bus (USB). Such a medium

should typically be encapsulated within a component

rather than appear as the component interface. In practice,

this is achieved by positioning a component’s software

and hardware on both sides of the medium. For example,

a printer will provide a software Bdevice driver[ for
installation on the computer it is connected to. That

device driver embeds the low-level details of the physical

connection within the logical printer functionality and

simultaneously presents an abstracted interface freed of

these low-level details to the application.

Metalanguages: Rather than defining a static predefined

set of interface capabilities, in ICT special languages can be
developed for describing specialized capabilities. Sharing

this language, components can define new functionality

dynamically by describing what they want or what they can

provide. Standardization can then focus on language

expressiveness rather than specific functionality. An

example is Visual Basic for Applications supported by

Microsoft Office, which is used to develop customized

applications building on Office as a platform.

Mobile Code: One component can dynamically share
code with another component, that code available to be

executed internally to the other component. In this way,

one component can directly add enhance the capabilities

of another component in ways that contribute to

complementarity. An example is JavaScript, which is

used by web servers to dynamically add functionality to

web browsers.

Infrastructure Intermediation: Forming direct interfaces

between pairs of components leads to a combinatorial

explosion of interfaces. Designing components to interact

through an appropriate infrastructure and embedding

generic intermediation capabilities within the infrastruc-

ture can limit the burden of this on the reference archi-

tecture. For example, a network connection-as-component

can be abstracted by encapsulating that connection within
an infrastructure that presents a friendlier interface (for

example, with Bactions[ consisting of Bfunctions[ and

Barguments,[ such as is supported by Bdistributed object

management[ systems like CORBA and Java [23]). The

generic capabilities needed to map interface to physical

connection can be implemented once and only once

within that infrastructure.

Adapter Intermediation: Infrastructure provides generic

intermediation capabilities. Although best to avoid if

possible, an adapter can intermediate between two com-

ponents possessing complementarity but lacking interop-

erability. Even better, each component can be equipped

with its own adapter to convert to a common intermediate

form or to a new infrastructure, separating responsibility

among the respective suppliers and reducing the overall
number of adapters to maintain. This is particularly ap-

propriate for legacy components that may have been

designed outside a reference architecture, which emerges

later, and/or making incompatible infrastructure assump-

tions. Of course, an adaptor is a blatant form of fitting.
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