Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Electronic cigarette chemicals transfer from a vape shop to a nearby business in a multiple-tenant retail building.

  • Author(s): Khachatoorian, Careen;
  • Jacob Iii, Peyton;
  • Benowitz, Neal L;
  • Talbot, Prue
  • et al.
Abstract

Background

Electronic cigarettes (ECs) are nicotine delivery devices that produce aerosol without combustion of tobacco; therefore, they do not produce sidestream smoke. Nevertheless, many users exhale large clouds of aerosol that can result in passive exposure of non-users. Analogous to thirdhand cigarette smoke, the exhaled aerosol also settles on indoor surfaces where it can produce a residue. We refer to this residue as EC exhaled aerosol residue (ECEAR). Our objective was to determine if exhaled EC aerosol transferred from a vape shop in a multiple-tenant retail building, where it was produced, to a nearby business (field site) where it could deposit as ECEAR.

Methods

We examined the build-up of ECEAR in commonly used materials (cotton towel and paper towels) placed inside the field site across from the vape shop. Materials were subjected to short-term (days) and long-term (months) exposures. Nicotine, other alkaloids and tobacco-specific nitrosamines (TSNAs) were identified and quantified in controls and field site samples using analytical chemical techniques.

Results

Nicotine and other alkaloids were detected after 1 day of exposure in the field site, and these chemicals generally increased as exposure times increased. TSNAs, which have been linked to carcinogenesis, were also detected in short-term and long-term exposed samples from the field site.

Conclusions

In a multiple-tenant retail building, chemicals in EC aerosol travelled from a vape shop into an adjacent business where they deposited forming ECEAR. Regulatory agencies and tenants occupying such buildings should be aware of this potential environmental hazard.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View