Improving the reliability of conductive atomic force microscopy-based electrical contact resistance measurements
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Improving the reliability of conductive atomic force microscopy-based electrical contact resistance measurements

Published Web Location

https://doi.org/10.1088/2632-959X/abcae0
No data is associated with this publication.
Abstract

Abstract: Electrical contact resistance (ECR) measurements performed via conductive atomic force microscopy (C-AFM) suffer from poor reliability and reproducibility. These issues are due to a number of factors, including sample roughness, contamination via adsorbates, changes in environmental conditions such as humidity and temperature, as well as deformation of the tip apex caused by contact pressures and/or Joule heating. Consequently, ECR may vary dramatically from measurement to measurement even on a single sample tested with the same instrument. Here we present an approach aimed at improving the reliability of such measurements by addressing multiple sources of variability. In particular, we perform current-voltage spectroscopy on atomically flat terraces of highly oriented pyrolytic graphite (HOPG) under an inert nitrogen atmosphere and at controlled temperatures. The sample is annealed before the measurements to desorb adsorbates, and conductive diamond tips are used to limit tip apex deformation. These precautions lead to measured ECR values that follow a Gaussian distribution with significantly smaller standard deviation than those obtained under conventional measurement conditions. The key factor leading to this improvement is identified as the switch from ambient conditions to a dry nitrogen atmosphere. Despite these improvements, spontaneous changes in ECR are observed during measurements performed over several minutes. However, it is shown that such variations can be suppressed by applying a higher normal load.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item