Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Automated detection of IVC filters on radiographs with deep convolutional neural networks.

Abstract

Purpose

To create an algorithm able to accurately detect IVC filters on radiographs without human assistance, capable of being used to screen radiographs to identify patients needing IVC filter retrieval.

Methods

A primary dataset of 5225 images, 30% of which included IVC filters, was assembled and annotated. 85% of the data was used to train a Cascade R-CNN (Region Based Convolutional Neural Network) object detection network incorporating a pre-trained ResNet-50 backbone. The remaining 15% of the data, independently annotated by three radiologists, was used as a test set to assess performance. The algorithm was also assessed on an independently constructed 1424-image dataset, drawn from a different institution than the primary dataset.

Results

On the primary test set, the algorithm achieved a sensitivity of 96.2% (95% CI 92.7-98.1%) and a specificity of 98.9% (95% CI 97.4-99.5%). Results were similar on the external test set: sensitivity 97.9% (95% CI 96.2-98.9%), specificity 99.6 (95% CI 98.9-99.9%).

Conclusion

Fully automated detection of IVC filters on radiographs with high sensitivity and excellent specificity required for an automated screening system can be achieved using object detection neural networks. Further work will develop a system for identifying patients for IVC filter retrieval based on this algorithm.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View