Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Machine Learning to Predict the Risk of Incident Heart Failure Hospitalization Among Patients With Diabetes: The WATCH-DM Risk Score

Published Web Location

https://doi.org/10.2337/dc19-0587
Abstract

Objective

To develop and validate a novel, machine learning-derived model to predict the risk of heart failure (HF) among patients with type 2 diabetes mellitus (T2DM).

Research design and methods

Using data from 8,756 patients free at baseline of HF, with <10% missing data, and enrolled in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, we used random survival forest (RSF) methods, a nonparametric decision tree machine learning approach, to identify predictors of incident HF. The RSF model was externally validated in a cohort of individuals with T2DM using the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT).

Results

Over a median follow-up of 4.9 years, 319 patients (3.6%) developed incident HF. The RSF models demonstrated better discrimination than the best performing Cox-based method (C-index 0.77 [95% CI 0.75-0.80] vs. 0.73 [0.70-0.76] respectively) and had acceptable calibration (Hosmer-Lemeshow statistic χ2 = 9.63, P = 0.29) in the internal validation data set. From the identified predictors, an integer-based risk score for 5-year HF incidence was created: the WATCH-DM (Weight [BMI], Age, hyperTension, Creatinine, HDL-C, Diabetes control [fasting plasma glucose], QRS Duration, MI, and CABG) risk score. Each 1-unit increment in the risk score was associated with a 24% higher relative risk of HF within 5 years. The cumulative 5-year incidence of HF increased in a graded fashion from 1.1% in quintile 1 (WATCH-DM score ≤7) to 17.4% in quintile 5 (WATCH-DM score ≥14). In the external validation cohort, the RSF-based risk prediction model and the WATCH-DM risk score performed well with good discrimination (C-index = 0.74 and 0.70, respectively), acceptable calibration (P ≥0.20 for both), and broad risk stratification (5-year HF risk range from 2.5 to 18.7% across quintiles 1-5).

Conclusions

We developed and validated a novel, machine learning-derived risk score that integrates readily available clinical, laboratory, and electrocardiographic variables to predict the risk of HF among outpatients with T2DM.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View