Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Application of Dislocation Theory to Minimize Defects in Artificial Solids Built with Nanocrystal Building Blocks

Abstract

ConspectusOriented atomic attachment of colloidal inorganic nanocrystals represents a powerful synthetic method for preparing complex inorganic superstructures. Examples include fusion of nanocrystals into dimer and superlattice structures. If the attachment were perfect throughout, then the resulting materials would have single crystal-like alignment of the individual nanocrystals' atomic lattices. While individual colloidal nanocrystals typically are free of many defects, there are a multitude of pathways that can generate defects upon nanocrystal attachment. These attachment generated defects are typically undesirable, and thus developing strategies to favor defect-free attachment or heal defective interfaces are essential. There may also be some cases where attachment-derived defects are desirable. In this Account, we summarize our current understanding of how these defects arise, in order to offer guidance to those who are designing nanocrystal derived solids.The small size of inorganic nanocrystals means short diffusion lengths to the surface, which favor the formation of nanocrystal building blocks with pristine atomic structures. Upon attachment, however, there are numerous pathways that can lead to atomic scale defects, and bulk crystal dislocation theory provides an invaluable guide to understanding these phenomena. As an example, an atomic step edge can be incorporated into the interface leading to an extra half-plane of atoms, known as an edge dislocation. These dislocations can be well described by the Burgers vector description of dislocations, which geometrically identifies planes in which a dislocation can move. Our in situ measurements have verified that bulk dislocation theory predictions for 1D defects hold true at few-nanometer length scales in PbTe and CdSe nanocrystal interfaces. Ultimately, the applicability of dislocation theory to nanocrystal attachment enables the predictive design of attachment to prevent or facilitate healing of defects upon nanocrystal attachment. We applied similar logic to understand formation of planar (2D) defects such as stacking faults upon nanocrystal attachment. Again concepts from bulk crystal defect crystallography can identify attachment pathways that can prevent or deterministically form planar defects upon nanocrystal attachment. The concepts we discuss work well for identifying favorable attachment geometries for nanocrystal pairs; however it is currently unclear how to translate these ideas to near-simultaneous multiparticle attachment. Geometric frustration, which prevents nanocrystal rotation, and yet-to-be considered defect generation pathways unique to multiparticle attachment complicate defect-free superlattice attachment. New imaging methods now allow for the direct observation of local attachment trajectories and may enable improved understanding of such multiparticle phenomena. With further refinement, a unified framework for understanding and ultimately eliminating structural defects in fused nanocrystal superstructures may well be achievable in coming years.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View