Skip to main content
Download PDF
- Main
Generalized mixture models, semi-supervised learning, and unknown class inference
Published Web Location
https://doi.org/10.1007/s11634-006-0001-9Abstract
In this paper, we discuss generalized mixture models and related semi-supervised learning methods, and show how they can be used to provide explicit methods for unknown class inference. After a brief description of standard mixture modeling and current model-based semi-supervised learning methods, we provide the generalization and discuss its computational implementation using three-stage expectation-maximization algorithm. © Springer-Verlag 2007.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%