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Structural Testing and Analysis of a Non-Traditional Pier 
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Professor P. Benson Shing, Chair 
 
 
 

 

This thesis explores the structural performance of a non-traditional pier.  The 

Modular Hybrid Pier (MHP) being investigated here is a structure that consists of two 

floating, reinforced-concrete, modular sections post-tensioned together. The three 

main objectives were: confirm that the operations deck could sustain a typical 

outrigger crane load without damage; verify the capacity of a bollard used to moor 

ships to the MHP; and model the behavior of the structure subjected to earthquake 

excitations.   
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During the deck test, the load was applied at a position perceived to be the 

most vulnerable. The operations deck behaved linearly up to the maximum applied 

load. The deck performed in a satisfactory manner without structural damage during 

the test. 

Vessels are berthed at the MHP with mooring lines that are wrapped around a 

steel bollard which is fixed to the pier deck. The bollard performed according to the 

design requirements in terms of the load capacity and there was no observable damage 

in the deck of the MHP. 

A multi-degree-of- freedom analytical model of the MHP was created to 

determine the effects of the dynamic loading of seismic events on the fenders and the 

structure as a whole.  The model incorporates the load rate dependent nature of the 

fender material and change in axial force with deformation.  Ten earthquakes were 

used to find the seismic response of the structure.
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1 Introduction 

 

1.1 Description of Modular Hybrid Pier 

A floating reinforced concrete Modular Hybrid Pier (MHP) design has been 

developed by Berger/ABAM Engineers in conjunction with over 25 government 

agencies, private firms, and universities as an alternative to a traditional pier design. 

The MHP being investigated here is a test-bed structure that consists of two floating 

reinforced concrete modular sections which are post-tensioned together to form a pier.  

A view of the east end of the structure is shown in Figure 1.1. The test-bed structure 

has a length of 100 ft. (30.5 m), a width of 50 ft. (15.2 m), and a height of 29 ft. (8.8 

m). It has been designed using full-size MHP components configured to represent 

elements of a full- size (1300 x 88 ft./400 x 27 m) MHP.  The modules were 

constructed with post-tensioned concrete wall panels and prestressed concrete planks 

with overlying post-tensioned cast- in-place concrete slabs.  The modules have three 

levels.  The lowermost level is sealed and serves as a floatation compartment.  The 

second internal level is referred to as the service deck and is designed to route utilities 

(hoteling) to moored ships through large openings in the exterior wall.  The uppermost 

level is referred to as the operations deck and is designed for trucks and cranes to 

service moored ships and transfer cargo. 
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Figure 1.1 - Photograph of MHP - Southeast End 

 

Because the concrete surfaces of the MHP could be in contact with salt water, 

there is a need for additional corrosion resistance.  In the east module (module 2) of 

the MHP, stainless steel reinforcing bars are used in sections in which a concrete 

surface can be exposed to salt water.  Epoxy coated reinforcement bars in combination 

with an enhanced durability post-tensioning system are used throughout the remainder 

of this structure.  In the west module (module1) of the MHP, MMFX mild 

reinforcement is used in combination with conventional post-tensioning systems. The 

modules for the test structure were constructed in a dry dock facility in Washington 

State as shown in Figure 1.2.  Afterwards, the dry dock was flooded and the modules 

were post tensioned to form a single structure.  A tug boat was used to tow the 

structure in the open ocean to its current location in the U.S. Naval Base on the 32nd 

Street in San Diego. 
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This structure has numerous benefits over conventional pile-based pier 

structures by having the following features: 

 
1. Seismic force isolation. 

2. A low dependence on local soil conditions and tides. 

3. The pier can be constructed off-site after which it can be towed to the desired 

location. This minimizes the construction impact on navy bases and allows for 

deployment of this structure to any location. 

4. As the needs of a navy base changes over time, the pier modules can be 

relocated and/or reconfigured. 

5. A utility deck with unique design features that allow economical revisions as 

ship technology and supporting utility requirements change over time. 

6. Two deck levels separating utilities from deck operations. 

7. 75-100 years of repair free service. 

 
Figure 1.2 - MHP Test-Bed Structure in Dry Dock 
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1.2 Thesis Objective 

. To ensure the targeted performance of the MHP, the Department of Structural 

Engineering at the University of California, San Diego was contracted to perform four 

types of tests on the structure.  These include deck and bollard capacity tests, as well 

as long and short-term tests of the fender system at the primary mooring shaft. Figure 

1.3 shows the plan view and Figure 1.4 shows the elevation view of the MHP test-bed 

investigated in this project including the test fixtures.  This thesis addresses the 

operations deck test and the bollard capacity test.  The deck test verifies the capacity 

of the operations deck, while the bollard test assesses its capacity and the resisting 

strength of the supporting concrete deck.  Seismic behavior of the pier is also modeled 

and the results presented. 

EXTENDED SECONDARY
MOORING SHAFT COLLAR
FOR SHORT-TERM TEST

DECK TEST

LONG-TERM TEST
WEIGHT FRAME

BOLLARD TEST SETUP
SHORT-TERM
TEST SET UP

LONG-TERM TEST
RIGGING

N

50'

50'50'
(MODULE 1) (MODULE 2)

 
Figure 1.3 - MHP Test-Bed Structure - Plan View 
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WATER LEVEL
(MLLW +0.00')

BOLLARD TEST SETUP

LONG-TERM TEST
WEIGHT FRAMEDECK TEST

SHORT-TERM TEST

W

 
Figure 1.4 - MHP Test-Bed Structure - Elevation View 
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2 Operations Deck Capacity Structural Test 

2.1 Introduction 

2.1.1 Description of the Operations Deck 

The uppermost deck of the MHP is the operations deck. The deck is designed 

to carry a maximum outrigger load of 250 kips, which corresponds to a factored 

design load of 400 kips. The deck design is shown in Figure 2.1 through Figure 2.2. 

The deck test was to be conducted at a location on the south side of Module 2. The 

deck consists of precast prestressed planks with a post-tensioned, cast- in-place, 

concrete slab on top. The reinforcement details of the cast-in-place slab are shown in 

Figure 2.1(b) and the design details of the precast planks are shown in Figure 2.3. The 

south side of the deck has the post-tensioning steel designed in the same way as that of 

the full-size MHP, while the north side does not. The deck has two continuous spans 

along the north-south direction. The planks in each span are supported by one exterior 

wall and one interior wall as shown in Figure 2.2 and Figure 2.4. The planks are 

haunched at the supported ends. The entire deck section is about 15- in. thick near the 

mid-span and over 20- in. thick near the supporting walls. A picture of the precast 

planks at the bottom of the operations deck in Module 2 is shown in Figure 2.4. 
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(a) Plan View of the Operations Deck 

 

 
 

(b) Post-tensioning Details of the Operations Deck 
 

Figure 2.1 - Design of the Operations Deck (in mm) 
 

N 
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Figure 2.2 - Transverse Section View of the MHP - Module 2 (in mm) 
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Figure 2.3 - Design of Precast Prestressed Planks (in mm) 
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Figure 2.4 - Bottom View of Prestressed Precast Planks 

 

2.1.2 Test Objectives and Scope of Work 

The main objective of the test reported here was to confirm that the operations 

deck can sustain the design service load of 250 kips without damage and to identify 

the reserve capacity of the deck by loading it to 400 kips or to a point at which 

noticeable but controlled damage might occur. For this purpose, it was decided that the 

test load would be applied on top of a drain hole on the south side of the operations 

deck near the second window from the east end, as shown in Figure 1.3, Figure 1.4 

and Figure 2.4. This was perceived to be a position most vulnerable to damage 

because a significant portion of the load would be carried by the beam that supports 

the precast planks and spans across the window opening. The load was applied by a 

pair of hydraulic jacks and was distributed over the deck with a 30 x 30 x 3- in. steel 

plate. A 2-1/2-in-diameter Dywidag bar was passed through the drain hole to transfer 
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the load to a reaction beam secured against the walls at the service deck level of the 

modular pier. The test setup is described in detail later. 

Pre-test analyses were conducted using simple design formulas and with a 

nonlinear finite element model was done by Hussein Okail using the commercial 

program ABAQUS (ABAQUS Manual 2006).  Results of these analyses were used to 

determine the loading protocol and the instrumentation scheme. Once validated and 

fine tuned with the test data, the finite element model has been used to assess 

maximum load capacity of the deck. The test program and results are presented in the 

following sections. 
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2.2 Pre-Test Analyses 

Pre-test analyses were conducted to predict the load capacity and the ultimate 

failure mechanism of the operations deck based on the loading condition to be used in 

the test. As mentioned in Section 1.3, the main objective of the test was to confirm that 

the deck can sustain the design service load of 250 kips without damage and to 

identify the reserve capacity of the deck by loading it to 400 kips or to a point at which 

noticeable but controlled damage might occur. The load was to be applied at a location 

close to a window in the south exterior wall of the modular hybrid pier. The applied 

load was to be distributed on the deck with a 30 x 30 x 3- in. steel plate. The capacity 

of the deck was expected to be governed by one of the two possible failure 

mechanisms. One is the punching shear failure of the deck and the other is the failure 

of the beam spanning across the window opening. Flexural failure of the deck was not 

likely because of the thick concrete slab, which could lead to a significant arching 

action. While the punching shear strength can be evaluated with simplified design 

formulas, the three-dimensional load resisting mechanism of the pier is best evaluated 

with a nonlinear finite element model. Hence, a 3-D finite element model was 

developed with the program ABAQUS. Results of these analyses were used to 

determine the loading protocol and instrumentation scheme. It had to be assured that 

the prescribed test load would not induce irreparable damage to the deck. 
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2.2.1 Punching Shear Strength 

The punching shear capacity of the deck can be estimated with the ACI 

formula (ACI 2005), which for a two-way prestressed slab can be expressed as 

 

( )0.3c p c pc oV f f b dβ ′= +  (2.1) 

 
in which pcf  is the average of the compressive stresses at the centroids of the 

concrete sections in the two prestressed directions, ob  is the perimeter of the critical 

section for shear, d  is the effective depth, and pβ  is the smaller of 3.5 and 

( / 1.5)s od bα + with sα  equal to 40 for interior columns, 30 for edge columns, and 20 

for corner columns. ACI also imposes the limits that pcf  be no greater than 500 psi 

and cf ′  cannot exceed 70 psi due to the limited test data available for these 

situations. The above formula is based on an assumption that a punching shear failure 

is initiated by diagonal tensile cracking at the defined critical section. The critical 

shear stress that induces diagonal tensile cracks can be estimated with the following 

equation based on stress transformation. 

 
2 2

2 2
pc pc

n t

f f
fτ

   
′= + −   

   
 (2.2) 

 
in which tf ′  is the tensile strength of concrete that can be considered to be 

proportional to cf ′  according to the ACI provisions. Hence, Equation (2.2) can be 

used to estimate the punching shear capacity. Equation (2.1) is an empirical equation 
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that leads to similar results as Equation (2.2). Since punching shear failure is not 

expected to occur when the maximum principal stress is less than the tensile strength 

of concrete, the limit imposed on pcf  by ACI seems very conservative when pcf  is 

sufficiently large to suppress a diagonal tensile crack. This was taken into 

consideration in the assessment of the punching shear capacity of the deck. 

The deck considered here is made of lightweight concrete. According to ACI, 

for lightweight concrete, cf ′  in Equation (2.1) should be replaced by /6.7ctf  when 

the splitting tensile strength ctf  is specified and by 0.85 cf ′  when ctf  is not specified. 

However, /6.7ctf  should not be greater than cf ′ . With these considerations, 

Equation (2.1) was used to assess the punching shear capacity of the deck. 

Based on the jacking force specified for the prestressing tendons in the design 

drawings, the concrete properties obtained from the quality control tests, and the 30 x 

30-in. loading area that was to be used in the test, the following values were 

determined for the parameters in Equation (2.1): cf ′  = 8,500 psi, ctf  = 580 psi, pcf  = 

1,220 psi (assuming an effective prestress level of 135 ksi), pβ  = 3.5, d = 12.25 in. 

(the deck was conservatively assumed to be 15- in. thick, which is the thickness of the 

shallowest portion of the deck around the mid-span), and ob  = 169 in. 

To estimate the punching shear capacity with Equation (2.1), three cases with 

different levels of conservatism were considered: (1) the ACI formula without the 

stress and strength limits for pcf  and cf ′  and without the consideration of 

lightweight concrete; (2) the ACI formula with the stress and strength limits but 
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without the consideration of lightweight concrete; and (3) the ACI formula with the 

stress and strength limits and with cf ′  replaced by /6.7ctf  but not exceeding cf ′  . 

The results are shown in Table 2.1. 

 
Table 2.1 - Punching Shear Strength 

 
 ACI – Case 1 ACI – Case 2 ACI – Case 3 

cV  1,430 kips 820 kips 820 kips 
 

As the table shows, the capacity of the deck should be between 820 and 1,430 

kips based on the ACI formula. Furthermore, it should be mentioned that the deck is 

haunched at the supported ends as shown in Figure 2.2, and at the load application 

location, the deck is over 20- in. thick. Hence, the actual punching shear capacity of the 

deck at that location would most likely be higher than that estimated here. This will be 

further confirmed by the finite element analysis presented next. 
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2.3 Experimental Setup 

The design of the operations deck has been described in Section 2.1. The deck 

is designed to carry an outrigger load of 250 kips.  This corresponds to a factored live 

load of 400 kips. The deck consists of precast prestressed planks with a post-

tensioned, cast- in-place, concrete slab on top. It has no bottom reinforcement 

continuous in the east-west direction and the gravity load is essentially resisted by 

one-way bending. The test load was to be applied on top of a drain hole on the south 

side of the operations deck near the second window from the east end. This was 

perceived to be a position most vulnerable to damage because a significant portion of 

the load would be carried by the beam that supports the precast planks and spans 

across the window opening. The test was to validate the load capacity of the deck but 

not to induce irreparable damage. The testing apparatus was designed to apply a 

maximum load of 400 kips with a factor of safety of 1.5. According to the pre-test 

analyses, no damage could be induced on the deck at this load level. The testing 

apparatus, loading protocol, and instrumentation scheme are described below. 

2.3.1 Test Setup 

In the test, a load was introduced to the deck through a 30 x 30 x 3- in. steel 

plate and two 300-kip hydraulic jacks.  A 2-1/2- in. diameter high-strength (Dywidag) 

bar was used to transfer the load to a reaction beam secured to the walls at the service 

deck level of the pier. The test setup and apparatus are shown in Figure 2.5 through 

Figure 2.7. The loading location took advantage of an existing drain hole, which is 
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located at the adjoining edges of two precast planks.  The drain hole is 6 in. in 

diameter and is close to a window in the south exterior wall. The south end of the 

reaction beam was restrained from movement by inserting it into a rectangular hole in 

a 2-in.-thick steel plate that was post-tensioned to the exterior wall with nine high-

strength rods. The south exterior wall is post-tensioned in the vertical direction and is 

able to resist the load transmitted by the reaction beam. 
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Figure 2.5 - Setup for Deck Test - Elevation View from the East 
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Figure 2.6 - Setup for Deck Test - Elevation View from the South 
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Figure 2.7 - Setup for Deck Test - Plan View at Service Deck Level 
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2.3.2 Instrumentation 

Four types of instruments were used in the test: displacement transducers to 

measure deck deflection, strain gages to measure concrete deformation, inclinometers 

to record rotation of the beam above the window opening, and pressure transducers to 

monitor the hydraulic pressure in the jacks.  The instrumentation scheme is illustrated 

in Figure 2.8 and Figure 2.9. Photographs of the instrumentation and test setup are 

shown in Figure 2.10. The strain was measured on the top and the bottom of the 

operations deck and in the north-south direction by gages SC-01 through SC-22 and 

SC-26 through SC-29.  At each location, the gage with the lower number was at the 

top. SC-23 through SC-25 measured strain in the east-west direction on the outside of 

the south wall.  These three gages were located two inches below the deck-beam 

interface.  Deflections were measured from the service deck to the bottom of the 

operations deck by transducers DT-01 through DT-14.  The window deformation was 

measured by DT-15 through DT-17 attached to the top and bottom of the window 

opening. The displacement of the reaction system was measured with respect to the 

service deck by DT-18 through DT-20.  DT-21 through DT-23 measured the possible 

separation of the deck slab from the exterior face of the south wall.  Additionally, a 

camera system with remote control was used to observe the condition of the concrete 

and to watch for cracking.  During the testing, the deflection of the deck at the load 

point and of the beam above the window opening, and the strain at SC-18 were 

monitored and plotted against the load. 
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Figure 2.8 - Instrumentation Plan - Plan View 
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Figure 2.9 - Instrumentation Plan - Elevation View 
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(a) Looking up from the Service Deck 

 
(b) Reaction Plate and Beam - Service Deck 

 
(c) Hydraulic Cylinders on Loading Plate - Operations Deck 

 
Figure 2.10 - Deck Test Loading Apparatus and Instrumentation 
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2.3.3 Loading Protocol 

The loading history applied is plotted in Figure 2.11. On the test day, the 

loading began at 10:30 am.  The load was gradually increased to 250 kips over the 

next four minutes.  This is the service load the deck is designed to carry. The load was 

then gradually unloaded to 30 kips at approximately the same rate.  This pattern was 

repeated two more times. The deck was then loaded to 250 kips a fourth time and the 

load was held at this level for five minutes. The load was then increased to 400 kips 

without unloading and held for five minutes. The deck was then fully unloaded and 

this portion of the test concluded at 11:11 am. 

After the deck was loaded to 400 kips, there was no discernible damage, and 

the decision was made to load the structure to 500 kips.  At 2:22 pm, the deck was 

loaded to a maximum load of 495.5 kips and held for five minutes.  The load was 

reduced to 400 kips and he ld for an additional five minutes.  The deck was unloaded at 

2:41 pm. 
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Figure 2.11 - Loading History on August 14th, 2007 
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2.4 Experimental Results 

2.4.1 Observed Performance 

There were few visible effects of the loading on the operations deck and the 

rest of the pier.  There were hairline cracks radiating from the drain hole where the 

loading was applied, as seen in Figure 2.12. These cracks were on the west side of the 

hole and closed upon the release of the load.  They were observed at a load of 500 kips 

but they could have occurred earlier.  Furthermore, cracks were observed in the wall 

right below the window. They were caused by the load transferred from the reaction 

plate bolted to the wall.  These cracks did not close fully after unloading and are 

discussed later. 

2.4.2 Recorded Deck Performance 

Figure 2.13 illustrates the maximum deck deflections recorded at the load 

levels of 250, 400, and 500 kips during the test.   Figure 2.13a shows the vertical 

deflections  recorded by displacement transducers DT-01 through DT-05 and DT-14, 

which were located along line B-B oriented in the north-south direction as shown in 

Figure 2.8. The deflected shape shows the tipping of the loading plate, whose south 

end was above the beam on the south wall that restrained the deflection of the deck.  

The edges of the plate are 15 in. from the center of the load.  Figure 2.13b plots the 

deflection data obtained from DT-07 through DT-12, which were located along line A-

A in the east-west direction as shown in Figure 2.8. It can be seen that the deck 

deflection is most significant at the center of the load and that the west side of the deck 
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deflects more than the east. It should be noted that the load was applied at the joint of 

two adjacent precast planks where the drain hole is located and that transducer DT-05 

was located at the edge of the east plank as shown in Figure 2.10a. The relatively large 

difference between the readings from transducers DT-05 and DT-10 implies a 

relatively large deformation of the plank on the east side. This is difficult to explain. 

Displacement transducer DT-09, which was 15 in. west of the center of the load along 

line A-A, did not function properly, and its reading is, therefore, not shown. 

Figure 2.14 shows the deflections of the beam spanning the window opening 

recorded by DT-13 and DT-14.  It can be seen that the entire beam over the window 

opening deflected horizontally. Figure 2.15 plots the load against the deflection 

recorded directly under the center of the load by transducer DT-05.  The curve shows 

that the load-deflection response is essentially linear with some small hysteresis loops 

under loading and unloading. The hysteresis loops appear to be more severe with the 

increase of the displacement amplitude. This could be due to friction in the load 

application system. 
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(a) Cracks Radiating from Drain Hole 

(Cracks have been outlined with black to enhance visibility) 
 

 
(b) Crack Location 

 
Figure 2.12 - Hairline Cracks at 500-Kip Loading 
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(a) Deflections Along North-South Direction (line B-B in Figure 2.8) 
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(b) Deflections Along East-West Direction (line A-A in Figure 2.8) 

 
Figure 2.13 - Deck Deflections at Different Load Levels 

Beam 

E W 



28 

 

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
-20 -15 -10 -5 0 5 10

West <---> East
Distance from Load (in)

D
ef

le
ct

io
n 

(i
n)

250

400

500

DT-13 DT-14

 
Figure 2.14 - Beam Displacements 
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Figure 2.15 - Deck Deflection at Point of Loading (DT-05) & Edge of Load Plate 

(DT-10) 
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Figure 2.16 through Figure 2.19 plot the strains in the north-south direction 

against the distance from the center of the load in the east-west direction at each load 

level.  Large differences in the strains measured at the top and bottom of the deck can 

be observed.  At sections farther (52.5 and 37.5 inches) north of the loading point, the 

compressive strains at the top of the deck are consistently higher than the tensile 

strains at the bottom.  This indicates that in-plane membrane strains were developed in 

the deck.  These compressive member strains were produced by the arching action of 

the deck.  The compressive membrane strains were less severe on the west side of the 

load. This could be due to the fact that the wall on the west side above the window 

might not provide enough support for the arching action to develop. 

Figure 2.20 through Figure 2.23 show the membrane strains calculated by 

averaging the top and bottom strains at each location.  Furthermore, as shown in 

Figure 2.22 and Figure 2.23, tensile membrane strains were found on the west side at 

sections close to the loading (0 and 22.5 inches north of the loading).  The mechanism 

that created these tensile in-plane strains is not entirely clear.  However, the membrane 

strains are calculated based on the assumption of an uncracked section. The tensile 

membrane strains could be an artifact of deck cracking near the drain hole. Even 

though such cracking was first observed at a 500-kip load, it could have occurred 

much earlier due to two reasons. First, the effective prestress in the precast planks in 

regions near the loading plate could be much lower than that in other areas because of 

the prestress loss in the stress transfer zone. The precompression at the bottom of the 

planks could be further reduced by the post-tensioning applied to the top cast- in-place 
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layer of the deck. Second, the drain hole would introduce stress concentration. These 

explain why cracks were observed in the test near the drain hole, while the pre-test 

finite element analysis indicated that these cracks would not occur till a load of 1100 

kips. 
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Figure 2.16 - Strains Measured at 52.5 inches North of Load 
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Figure 2.17 - Strains Measured at 37.5 inches North of Load 
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Figure 2.18 - Strains Measured at 22.5 inches North of Load 



32 

 

-250

-150

-50

50

150

250

350

450

-30 -10 10 30 50

West <---> East
Distance from Load (in) 

St
ra

in
 (x

10
6 )

250 Bottom
400 Bottom
500 Bottom
250 Top
400 Top
500 Top

SC-22

SC-04

SC-15

SC-11

 
Figure 2.19 - Strains Measured at Load (line A-A) 
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Figure 2.20 - Calculated Membrane Strains at 52.5 inches North of Load 
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Figure 2.21 - Calculated Membrane Strains at 37.5 inches North of Load 
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Figure 2.22 - Calculated Membrane Strains at 22.5 inches North of Load 
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Figure 2.23 - Calculated Membrane Strains at Load 

 
 Bending strains are calculated by subtracting the membrane strains from the 

measured strains. They are plotted in Figure 2.24 through Figure 2.27.  As the plots 

show, for sections close to the loading, the bending strains are higher on the west side 

than on the east.  These could be due to cracking as explained previously. 
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Figure 2.24 - Bending Strains at 52.5 inches North of Load 
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Figure 2.25 - Bending Strains at 37.5 inches North of Load 
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Figure 2.26 - Bending Strains at 22.5 inches North of Load 
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Figure 2.27 - Bending Strains at Load 
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2.4.3 Beam Behavior 

The deflection of the beam at the edge of the deck above the window opening 

is plotted against the load in Figure 2.28. A linear relation can be observed. The 

rotation of the beam could not be accurately measured because neithe r the 

inclinometers nor the displacement transducers (DT-16, DT-16, and DT-17 as shown 

in Figure 2.8) in the window opening provided reliable readings. The readings of the 

inclinometers were adversely affected by the constant movement of the pier induced 

by the ocean waves and the readings of the displacement transducers were corrupted 

by the cracking movement in the wall below the window as will be discussed in 

Section 4.4. Bending strains were measured near the top of the beam above the 

window opening. They are plotted in Figure 2.29. 
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Figure 2.28 - Beam Deflection 
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Figure 2.29 - Bending Strains in Beam (2” below Beam-Deck Interface) 
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2.4.4 Apparatus Issues 

A decision was made to load the deck to 500 kips after no damage was 

observed at the 400-kip level. This additional loading caused slippage between the 

reaction plate and the wall.  Additionally, there was significant cracking in the vicinity 

of the internal wall post-tensioning anchors below the window opening.  The cracking 

and the slippage movement can be seen in Figure 2.30 and Figure 2.31.  Figure 2.31 

clearly shows a permanent displacement of 0.014 in., which was probably a 

combination of the reaction plate slippage and the cracking movement of the wall.  

The wall of the pier below the service deck was inspected after the test to verify that 

there was no additional cracking or damage.  The cracks below the window opening 

were not structural damage, and they were filled with epoxy to protect the 

reinforcement from future corrosion problems. 
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Figure 2.30 - Cracking in Wall below Window Opening Supporting the Reaction Plate 
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Figure 2.31 - Movement of the Load Transfer Plate with Respect to the Service Deck 
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3 Bollard Capacity Structural Test 

3.1 Introduction 

3.1.1 Description of the Bollard 

The bollard is made of a steel cylinder that has an outer diameter of 16 in. and 

an inner diameter of 12.8 in. A picture of the bollard and the design drawings are 

shown in Figure 3.1 and Figure 3.2, respectively. The cylinder is connected to a 4”-

thick base plate with a 1- in. fillet weld all around.  The weld size has been increased 

from the original design of 3/8 in.  During the test, the bollard was attached to the deck 

with four 2-9/16- in.-diameter A449.  As shown in Figure 3.1, the original bollard had 

six bolts. The middle bolts on the north and south sides were removed to reduce the 

excess capacity.  The maximum mooring (service) load expected for the bollard is 200 

kips and the bollard is designed to have a factor of safety of 2. In the test, a load was 

applied to the bollard towards the south with a vertical angle of 11 degrees.  This was 

the critical angle for the tensile fracture of the weld, which was expected to be the 

governing failure mode as indicated by the pre-test analyses presented in Section 3.2. 

Currently, there are few standards for validating the capacity of a bollard.  It is 

anticipated that this full-scale test will be instrumental in creating a test methodology 

for a future standard. 
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Figure 3.1 - Photograph of the Tested Bollard 
 
 
 

  
Figure 3.2 - Design of the Bollard 
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3.1.2 Test Objectives and Scope of Work 

The test objective was to validate the load capacity of a full-size bollard that is 

bolted onto the operations deck on the south side of the MHP.  The test was to validate 

the targeted design capacity but not to induce irreparable damage to the bollard or the 

deck. Prior to the test, simplified analyses and nonlinear finite element modeling were 

conducted to identify the failure mechanism and load capacities of the bollard and the 

supporting deck. Results of these analyses were used to determine the loading protocol 

and the instrumentation scheme.  

3.2 Pre-Test Analyses 

The bollard that was selected for the load test is located on the south side of the 

operations deck. It is made of a steel pipe that has an outside diameter of 16 in. and a 

wall thickness of 1.594 in. The design of the bollard and the details of its attachment 

to the operations deck are shown in Figure 3.2. It is connected to a 4- in.-thick base 

plate with 1-in. fillet weld all around. The base plate is attached to the operations deck 

with six 2-9/16- in.-diameter A449 bolts, which pass through the holes in the deck and 

a thick steel plate underneath and are secured with nuts. Before the test, it was decided 

that two of the bolts be removed to reduce the excess capacity and they would be re-

installed afterwards. The bollard is designed to have a mooring service capacity of 200 

kips with a factor of safety of 2. Hence, it is expected to sustain a load of 400 kips 

without being damaged. 
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In the test, the load was applied towards south with a steel rope wrapped 

around the bollard right beneath the horns at an angle that was perceived to be the 

critical loading angle with respect to the horizontal. The critical angle is one that 

results in the smallest failure load. Analyses were conducted prior to the test to 

estimate the actual load capacity of the bollard and to determine the governing failure 

mode and the corresponding critical loading angle. Simplified analyses were first 

conducted to obtain a good estimate of the bollard capacity. Based on the critical 

loading angle determined from the analyses, nonlinear finite element analyses of the 

bollard and the deck were conducted by Hussein Okail at UC San Diego to confirm 

the analytical results. The analysis results were used to determine the loading protocol 

and instrumentation scheme for the load test. 

 

3.2.1 Simplified Analyses 

In the simplified analyses, a number of potential failure mechanisms were 

considered, including: 

 
1. Tensile failure of the bollard cylinder. 

2. Tensile failure of the weld at the base of the bollard cylinder. 

3. Tensile failure of the anchor bolts. 

4. Failure of the operations deck due to the prying action of a loaded bollard. 

 
The following sections present the assumptions, reasoning, and calculations 

used to determine the load capacity and critical loading angle for each of the above 
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scenarios. Since the load test was to validate the factor of safety in the bollard design 

and not to induce ir reparable damage in the bollard, the capacity of the bollard was 

considered to be reached when the maximum tensile stress in the cylinder or anchor 

bolts reaches the yield stress, or that in the weld reaches the tensile strength, 

whichever comes first. However, for the concrete deck capacity under the prying 

action, the ultimate strength was estimated, based on which a safe maximum test load 

could be determined. 

 

Tensile Failure of Bollard Cylinder 

The cylindrical body of the bollard is made of a 405 SCH 160 pipe, which has 

an outside diameter of 16 in. and a nominal wall thickness of 1.594 in. The nominal 

yield strength yσ  = 35 ksi. The steel cylinder is filled with concrete. The loading 

condition of the bollard is shown in Figure 3.3. The horns have a diameter of 4 in. and 

the steel wire rope to be used in the test had a nominal diameter of 2-1/2- in. 

 
 

 

Figure 3.3 - Bollard Loading Condition 
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Based on the configuration shown in Figure 3.3, the maximum tensile stress 

induced by the bending and axial force was calculated as 

 
cos sin

m
h

P
S A

θ θ
σ  = + 

 
 (3.1) 

 
in which S is the section modulus and A is the cross-sectional area of the 

cylinder. It was found that the influence of the concrete core on the bending capacity 

of the bollard is very small, and, therefore, it was neglected in the analysis. The critical 

loading angle for this case is one that results in the highest mσ  for a given load P. It 

was obtained from the following equation. 

 
sin cos

0md h
P

d S A
σ θ θ
θ

− = + = 
 

 (3.2) 

 
which leads to 
 

tan
S

Ah
θ =  (3.3) 

 
In this case, we have h =13.25 in., A = 72 in.2, and S = 237 in. 3. This results in 

? = 11.27o. With Equation (2.1), the maximum load capacity of the bollard was 

calculated to be 610 kips. 

 

Tensile Failure of Weld 

It was conservatively assumed that weld fracture would occur when the 

maximum tensile stress in the weld reached the tensile strength s w. The maximum 

tensile stress in the weld was estimated in a way similar to that for the bollard cylinder 
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but taking into account of the size of the weld. As a result, the critical loading angle ? 

would be the same as that for the bollard cylinder, i.e., ? = 11.27o. Based on Equation 

(2.1), the maximum tensile stress in the weld was estimated with the following 

formula.  

 

,
cos sin

m w
e

h t
P

S A T
θ θ

σ  = + × 
 

 (3.4) 

 
in which t is the nominal wall thickness of the bollard cylinder, which is 1.594 

in., eT  is the effective throat dimension of the fillet weld, and S is the section modulus 

and A is the cross-sectional area of the bollard cylinder. For a 1- in. weld, 

0.707 1 in. = 0.707 in.eT = ×  

The weld was applied with an E70 electrode. Hence, the nominal tensile 

strength, s w, of the weld is 70 ksi. However, with the conservatism used in welding 

practice, the actual strength could be around 90 ksi. By assuming that weld failure 

would occur when s m,w reached 70 ksi, the load capacity calculated with Equation 

(2.4) would be 540 kips. However, in design, the capacity of a weld is normally 

conservatively based on the shear strength of the weld, which is taken to be 60% of the 

tensile strength. With this assumption, the capacity of a weld would be governed by 

the condition that s m,w = 0.6 s w. With s w equal to 70 ksi, the load capacity calculated 

with this condition would be 320 kips. With s w equal to 90 ksi, the load capacity 

would be 410 kips. Hence, a conservative estimate of the load capacity of the weld is 

320 kips. However, it could be around 540 kips or higher based on the above 

considerations. 
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Tensile Failure of Bolts 

To estimate the tensile stress in the bolts, the base plate of the bollard was first 

assumed to be rigid. It would rotate as a rigid body when the bollard was loaded. At 

first, all six anchor bolts were considered in the analysis. The result indicated an 

excessive load capacity. Hence, it was subsequently decided that two of the bolts be 

removed in the test. The calculations presented below are based on a total of four 

anchor bolts. The idealized load resisting mechanism of the bolts is shown in Figure 

3.4. 

With the base plate assumed rigid, one can calculate the total force in the two 

extreme tension bolts as follows. 

 

( ) 2
2 2 2

1 2

sin cos
d

F P a h
d d

θ θ′= +
+

 (3.5) 

 
with the geometric parameters defined in Figure 3.4 - Load Resisting 

Mechanism of Bolts. The critical loading angle for a given load P is given by the 

following equation. 

 

tan
a
h

θ =
′
 (3.6) 

 
Based on the dimensions of the base plate and the bolt locations, a = 17.3 in., 

h’ = 17.25 in., 1d  = 5.3 in., and 2d  = 29.3 in. This results in the critical loading angle 

θ  = 40o. For 2-9/16-in.-diameter A449 bolts, the cross-sectional area of the threaded 

portion of a bolt is about bA  = 4 in.2 and the yield strength yσ  = 92 ksi. Hence, the 

maximum 2F  that can deve lop without yielding the bolts is 2,max 2 b yF A σ=  = 736 kips. 
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With this and Equation (2.5), the maximum load P that could be carried without 

causing bolt failure was estimated to be 920 kips. 

 

 
Figure 3.4 - Load Resisting Mechanism of Bolts 

 
 
Deformable Base 
 

In reality, both the base plate and the concrete deck are deformable. To account 

for this in a simple and conservative way, the vertical reaction R was shifted from 

point A, the edge of the plate, towards the interior by 4 in. to reduce the moment arm 
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for 2F  as shown in Figure 3.5. This is a very significant shift and is considered 

extremely conservative. In this case, the contribution of 1F  is negligible. Hence, 

 

[ ]2
2

( 4)sin cos
4

P
F a h

d
θ θ′= − +

−
 (3.7) 

 
Equations (2.7) leads to the critical angle θ  of 33o and the maximum load 

capacity of  860 kips. 

 
Figure 3.5 - Bolt Resistance with Base Deformation and Friction 

 
Interaction of Tension and Shear 
 

Since bolt tension was not specified for the installation of the bollard, the 

initial tension in the bolts was assumed zero. Hence, the base plate would very likely 

slide over the deck surface under a large load, and, subsequently, the bolts could be 

subjected to shear when they leaned against the wall of the bolt holes. To account for 

this situation, the capacity of a bolt under simultaneous tension and shear was 
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estimated using an interaction formula. The total shear demand on the bolts was 

estimated as 

2cos ( sin )bV P F Pθ µ θ= − −  (3.8) 
 

in which 2F  could be conservatively calculated with Equation (2.7) assuming a 

deformable base. The shear was assumed to be equally shared by all 4 bolts. It was 

assumed that the coefficient of friction µ  between the base plate and the deck surface 

is 0.2 and the interaction between the shear and tensile strengths follows a linear 

relation. Hence, one can calculate the maximum allowable 2F  with the following 

formula. 

2

2,max 2,max

1
1.2

bVF
F F

+ =  (3.9) 

 
In the above formula, 2,max 2 b yF A σ=  = 736 kips, which is the nominal capacity 

of a pair of bolts when subjected to tension alone, the shear strength of a bolt can be 

assumed to be 60% of the tensile strength, and 2F  and bV  are given by Equations (2.7) 

and (2.8), respectively. This results in the critical loading angle θ  of 25o and the 

maximum load capacity of 480 kips. 

In summary, with four bolts, the maximum load that could be carried by the 

bollard without yielding the bolts was estimated to be between 480 and 920 kips. 

However, the actual capacity would depend on the amount of shear carried by the 

bolts and the deformability of the base. 
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3.2.2 Deck Failure 

The concrete deck will be subjected to a prying action when the bollard is 

loaded. The capacity of the deck under the prying action was conservatively assessed 

assuming a one-way bending action. The thickness of the deck varies along the north-

south direction between the supporting walls underneath. The thickness of the deck is 

about 15 in. for the middle portion and close to 20 in. at the place where the bollard is 

located. To estimate the nominal moment capacity of the deck, it was conservatively 

assumed that the deck had a thickness of 15 in. As a result, the nominal moment 

capacity for positive bending was estimated to be nM +  = 153 kip-ft./ft. and the nominal 

moment capacity for negative bending was nM −  = 94 kip-ft./ft. The effective bending 

width was conservatively assumed to be 6 ft., which is about twice the dimension of 

the bollard base plate. This was proven by the subsequent finite element analysis to be 

very conservative. 

The deck has two continuous spans in the north-south direction over three 

supporting walls. Even though the deck can be considered as rigidly connected to the 

supporting walls, the walls are relatively flexible and can provide only limited 

rotational restraints. Because of the difficulty in finding the exact restraint conditions, 

a single span was considered with the south end simply supported and the north end 

fixed, as shown in Figure 3.6, to establish the limiting load. The limiting prying 

moment and load were calculated with a plastic analysis with the plastic hinge 

locations shown in Figure 3.6. The load applied to the bollard was assumed to be 

horizontal and located at 17.25 in. (h’ in Figure 3.4) above the surface of the deck. The 
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following values were used for the dimensions shown in the figure: b = 1 ft., 2a = 3 ft., 

and c = 21 ft., which were estimated from the design drawings for the modular pier. 

Based on the conditions shown in Figure 3.6, the maximum prying moment that could 

be sustained was calculated to be 840 kip-ft., which corresponds to a maximum 

horizontal load of 580 kips. 

 
 

Figure 3.6 - Boundary Conditions for Prying Action 
 

3.2.3 Summary of Simplified Analyses 

Results of the simplified analyses are summarized in Table 3.1. It should be 

mentioned that the nominal moment capacities of the deck were used to estimate its 

failure load, while the maximum stresses are limited to the yield or tensile strengths at 

other failure locations. Noticeable damage could occur in the deck when the moment 

carried reaches 80% of the nominal capacity. Even with this consideration, the weld 

seems to be the weakest component in the bollard system. For this reason, the loading 

angle was selected to be 11 degrees for the test. 
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Table 3.1 - Estimated Failure Loads 
 

Failure Location Critical Loading Angle 
(Degrees) 

Failure Load (kips) 

Bollard Cylinder 11 610 
Weld (1 in.) 11 320-540 

Bolts (4) 25-40 480-920 
Deck 0 (assumed) 580 
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3.3 Experimental Setup 

3.3.1 Test Setup 

The bollard capacity test was designed to simulate the mooring loads 

introduced by a vessel.  The bollard was to be loaded up to the incipience of failure, 

but not to exceed 400 kips. The design of the test apparatus is general enough to be 

used as a standard test apparatus for different bollard types. The height and angle of 

load application can be varied with minor modifications in the test setup should a 

different failure mechanism be anticipated for a bollard, or to accommodate a 

particular geometry.  

The bollard being tested is on the south side of the operations deck as seen in 

Figure 1.3. As shown in Figure 3.7 through Figure 3.9, the bollard was loaded with 

two 300-kip hydraulic jacks.  The jacks were attached to a reaction system that 

consisted of a steel frame that was secured horizontally in place by reacting against the 

south edge of the operations deck when it was pushed by the jacks, as shown in Figure 

3.7. The other ends of the jacks pushed against the W12x252 cross beam, as shown in 

Figure 3.7 and Figure 3.9, which could slide along an inclined surface that had an 11-

degree angle, which was the critical loading direction.  The system was completed by 

a 2-½-inch diameter steel rope that wrapped around the bollard under the bollard horns 

and was attached to the cross beam with spelter sockets. The rope exerted load onto 

the bollard as the cross beam was pushed by the jacks.  The apparatus extended out 

over the edge of the modular pier, as seen in Figure 3.7.  The concrete in the area of 
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interest was painted white with a brittle primer to aid in the identification of crack 

location and size.  The test setup was designed for a test load of 400 kips with a factor 

of safety of 2. 

 
2 - 300 kip HYDRAULIC CYLINDERS

2-1/2" Ø WIRE ROPE (6x37, EEIP, RRL, IWRC)
WITH CROSBY OPEN SPELTER SOCKET, G-416 AT EACH END
TOTAL 94" ASSEMBLY LENGTH FROM ? PIN TO ? PIN

NOTE: LOADING ANGLE: 11° FROM HORIZONTAL

11'-5"

Ø1 1
16"

W12x252 CROSS BEAM

INCLINED CROSS
BEAM SUPPORT

EXTERIOR EDGE OF MHP

OPERATIONS DECK LEVEL

1/2" NEOPRENE PAD
1/2" STEEL PL

3'-53
4"

REACTION STUB BEAM
(W14x120)

LOAD STUB BEAM
(W14x120)

MAIN BEAM
(W14x120)

APPLY GREASE BETWEEN
CROSS BEAM AND

INCLINED SUPPORT

5'-1 9
16"

 
Figure 3.7 - Setup for Bollard Test - Elevation View 

 

2 - W14x120 REACTION FRAMES
HSS6.000x0.250
CROSS BRACE

6'

11'-5"
Ø1 9

16" HOLE

FOR 1-1/2" x 4" LENGTH
A490 BOLT (TYP)

EXTERIOR EDGE OF MHP

2'2' 2' 2'
REMOVE CONCRETE

CURB IN THIS REGION
(TYP)

11/16" Ø HOLE

2 CONCRETE ANCHORS  TO
BE INSTALLED (TYP)

 
Figure 3.8 - Setup for Bollard Test - Plan View 
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W12x252 CROSS BEAM

300 kip HYDRAULIC CYLINDER
(EACH SIDE)

2-1/2" Ø WIRE ROPE
(6x37, EEIP, RRL, IWRC)

CROSBY OPEN SPELTER SOCKET, G-416
(FOR 2-1/2" Ø WIRE ROPE)

W14x120 REACTION FRAME BEAM

/

CROSBY

8 2-2
5

2
/1 /

CROSBY

8 2-2
5

2
/ 1

2" THICK TANG PL
(CJP WELD TO CROSS BEAM)

9/16" HOLE FOR 1/2"Ø BOLT
(HYD. CYL. TO PL, TYP)

5/8" WIRE ROPE (6x19, EIP, RRL, IWRC)
TURNBACK EYE WITH THIMBLE AND
CROSBY CLIP END TERMINATIONS,

ENSURE MINIMUM 8" SLACK, TYP

1" BOLT TYPE ANCHOR SHACKLE
(CROSBY G-2130), TYP

 
Figure 3.9 - Setup for Bollard Test - Cross Beam Assembly 

 
 

3.3.2 Instrumentation Scheme 

The instrumentation scheme developed and used for the test is shown in Figure 

3.10 through Figure 3.12. The scheme was confirmed by the pre-test analyses to be 

adequate for capturing the key behavior of the bollard system. Four types of sensors 

were installed: displacement transducers to measure the deflections of the deck and the 

bollard, strain gages to measure concrete deformation and the strains in the bollard and 

anchor bolts, inclinometers to record the tilting of the bollard, and pressure transducers 

to monitor the hydraulic pressure in the jacks.  The strains in the north-south direction 

were measured on the top and the bottom of the operations deck by gages SC-01 

through SC-31.  Deflections of the operations deck were measured with respect to the 

service deck by transducers DT-01 through DT-16. Transducers DT-17 and DT-19 

measured the possible separation of the operations deck from the supporting beam 

above the window opening. The displacement of the bollard was measured with 

respect to a point on the operations deck that was more than 25 ft. away from the south 
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edge of the deck. Photographs of the instrumentation and setup are shown in Figure 

3.13. The strain in each bolt was measured by gages embedded right below the bolt 

head. Additionally, a camera system with remote control was used to observe the 

condition of the concrete and to watch for cracking.  During the test, the following 

information was monitored and displayed in real-time with the top displacement of the 

bollard and the strains in the concrete adjacent to the bollard plotted against the 

applied load. 

1. Applied load. 

2. Horizontal displacements of the bollard at top and the base. 

3. Base plate uplift. 

4. Tilt angle of the bollard. 

5. Strains around the bollard right above base plate. 

6. Strains in the anchor bolts. 

7. Strains at the top and bottom surfaces of the deck at selected locations. 

8. Vertical deflections of the deck at selected locations. 

9. Concrete crack pattern in the deck during and after loading. 

10. Video cameras for observing cracks and damage above and beneath the 

operations deck. 
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Figure 3.10 - Bollard Instrumentation Plan - Bollard Elevation  and Plan Views 
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Figure 3.11 - Deck and Bollard Instrumentation Plan - Plan View 
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Figure 3.12 - Measurement of Bollard Horizontal Displacements 
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(a) Looking up from the Service Deck 

 

 
(b) Wire Rope in Spelter Socket Around Bollard  

 

 
(c) Cross-Beam and Hydraulic Jacks at 11° 

Figure 3.13 - Bollard Test Instrumentation Photos 
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3.3.3 Loading Protocol 

The objective of the test was to see if the bollard is able to resist the maximum 

service load of 200 kips and assess its reserve capacity. The failure of the bollard was 

expected to be dominated by the tensile fracture of the weld at the base plate. Based on 

the finite element analysis, this may occur at a load of 560 kips. The loading protocol 

was designed to verify that the bollard meets the design requirement with a factor of 

safety of two.  The bollard was subjected to a load that had a vertical angle of 11 

degrees, which would result in the minimum load to induce weld fracture.  

On the day before the test, the bollard was loaded to 100 kips to validate the 

test setup.  A small horizontal displacement of the bollard occurred. On the day of the 

test, load testing of the bollard began at 11:00 am.  The loading history applied is 

plotted in Figure 3.14. The load was gradually increased to 200 kips over the next 

three minutes.  This load level was held for 16 minutes. The load was then gradually 

lowered to 30 kips at approximately the same rate.  The load was then cycled between 

30 and 200 kips four more times with each cycle taking approximately three minutes.  

The bollard was then fully unloaded and the service load portion of the test concluded 

at 12:02 pm. 

At 1:57 pm, loading started again to bring the load to 400 kips. When the load 

reached about 275 kips, a sudden load drop of 40 kips occurred. This was 

accompanied by a loud noise. After this, the load was almost immediately brought 

back to 280 kips and was maintained at 280 kips for four minutes. The bollard was 

then unloaded to 30 kips.  The bollard and the testing apparatus were inspected and it 
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was determined that there was no discernable damage.  At 2:29 pm, the bollard was 

loaded to a maximum load of 410 kips and the load was held for two minutes.  The 

load was then reduced to 200 kips and held for an additional ten minutes for 

observation.  No damage of any sort was observed. The bollard was then unloaded to 

30 kips and the load was cycled between 30 and 400 kips twice.  The bollard was 

finally unloaded at 2:56 pm. 
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Figure 3.14 - Loading History 
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3.4 Experimental Results 

3.4.1 Observed Performance 

The bollard slipped south during both the preliminary equipment checking test 

conducted on the day before and the bollard capacity test.  Additionally, there was a 

loud noise heard at about 275-kip load during the test.  This was most likely caused by 

some slip in a bolted connection in the testing apparatus. The time lapse video taken 

during the test clearly shows that the bollard base was sliding back and forth with the 

loading and unloading cycles as shown by the slip marks due to paint scraping in 

Figure 3.15. This behavior is due to the tilting and untilting of the anchor bolts against 

the bolt holes during the load cycles.  There were no visible effects of the bollard 

loading on the operations deck. 

 
 

 
Figure 3.15 - Photograph of Slip Marks of the Bollard 
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3.4.2 Recorded Performance 

The overall bollard behavior recorded during the test is a combination of the 

deformation of the bollard, the deformation of the deck, and the relative motion 

between the two.  A sudden load drop of 40 kips accompanied by a loud noise was 

observed at about 275 kips. The exact cause of this is not known. It could be due to 

some slip occurring in a bolted connection of the steel reaction frame. After this, the 

bollard was reloaded to 280 kips and held at that load level for four minutes. During 

this period, the west side of the base plate slipped further. The data recorded from the 

bollard and the deck are presented below. 

Bollard Behavior 

There were 8 strain gages on the bollard itself, one on the top of each horn and 

six around the circumference near the base of the bollard (see Figure 3.10).  The strain 

gages were installed on the top of the horns and the compressive strains induced by the 

steel rope are shown in Figure 3.16.  The strains in the two horns were different due to 

the positioning of the steel rope below. The strains close to the base of the bollard are 

plotted against the load in Figure 3.17 and they exhibit a linear relation with respect to 

the applied load. The gage locations are shown in Figure 3.10. The maximum strains 

reached are way below the yield level as expected from the pre-test analyses. The 

strains in the bolts are plotted in Figure 3.18.  All the bolts were in tension. The strain 

gage in the southeast bolt did not function correctly and the strain is, therefore, not 

shown here.  Figure 3.18 shows that the northeast bolt started to exhibit a nonlinear 
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load-strain relation at about a 300-kip load while the other two bolts behaved more or 

less in a linear fashion. The northeast bolt developed a much larger strain than the 

northwest bolt during loading and a residual strain upon unloading.  However, the 

maximum strain developed in the northeast bolt is still way below the expected yield 

strain of 0.003. The exact cause of this is not known. It could be due to the 

malfunctioning of the strain gage. The strain developed in the northwest bolt is 

consistent with that obtained in the pre-test finite element analysis, which has 

indicated that the bolt will yield at a load of 965 kips. 
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Figure 3.16 - Strains in Bollard Horns 
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Figure 3.17 - Strains Near the Bollard Base 
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Figure 3.18 - Strains in the Bolts 

 
Figure 3.19 shows the horizontal displacements of the bollard with respect to a 

fixed reference point on the operations deck that was far away from the bollard. The 
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transducer locations are shown in Figure 3.12. It can be observed that the west side of 

the base plate slipped more than the east, especially when the load was held at 280 

kips for four minutes. The displacement at the top of the bollard was a combination of 

the slipping and tilting of the base plate, and the deformations of the bollard and the 

deck.  The additional slippage of about 3/8 in. that occurred during the preliminary 

equipment checking test is not shown here.  The vertical displacement (uplift) of the 

north edge of the base plate is plotted in Figure 3.20. The vertical displacements on the 

northeast and northwest sides are about the same. This indicates that the strains in the 

two north-side bolts should not differ significantly. However, the uplift response 

shown is slightly nonlinear and is a lot higher that that expected from the bolt 

elongation shown in Figure 3.18. 
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Figure 3.19 - Horizontal Displacements of Bollard 
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Figure 3.20 - Uplift of the Base Plate 

Deck Behavior 

Figure 3.21 illustrates the reference lines along which the deflections and 

strains in the deck are plotted here. The deflection of the deck was measured with 

respect to reference positions on the service deck, which could be practically 

considered as fixed as shown by the finite element analysis.  A positive reading from a 

displacement transducer, shown as a circle in Figure 3.21,  indicates an upward 

displacement of the operations deck. The strain gages, shown as rectangles in the 

figure, were placed at the top and the bottom of the deck, with the lower numbers 

representing those on top of the deck.  Figure 3.22 plots the load against the 

displacements measured by the transducers installed along line B as shown in Figure 

3.21, except for transducer DT-06, which did not function properly. One can observe 

some hysteretic behavior and residual displacements after unloading. It is believed that 
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part of the residual displacements could be related to the resolution of the 

measurement devices as the displacements being measured are extremely small. 
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Figure 3.21 - Deck Instrumentation and Reference Lines 
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Figure 3.22 - Load-vs.-Deck Deflection Curves 
 

Figure 3.23 plots the maximum deflections along the three north-south lines 

shown as A, B and C in Figure 3.21 under 200 and 400-kip loads.  The deflected 

shapes are consistent with the prying action of the loaded bollard and the direction of 

the applied load. It is clear that the whole bollard moved upward. However, the 

readings from transducer DT-09 seem to be a bit large as compared to those of the 

other transducers leading to curvatures that are difficult to explain. Deflections along 

lines A’ through E’ in the east-west direction are plotted in Figure 3.24 and Figure 

3.25. Displacement transducer DT-06, at the intersection of lines D’ and B, did not 

function properly and its reading is, therefore, not shown here. The uplift of the 

prestressed plank from the supporting beam is shown in Figure 3.26. It was measured 
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by displacement transducers DT-17 and DT-19. These displacement transducers 

measured the relative displacement between the top of the beam and the bottom of the 

operations deck along the north side of the beam. 
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Figure 3.23 - Deflections of Deck Along North-South Lines (A, B, & C) at 200 and 

400-Kip Loads 
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Figure 3.24 - Deflections of Deck at 200 Kips Along East-West Lines (A’-E’) 
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Figure 3.25 - Deflections of Deck at 400 Kips Along East-West Lines (A’-E’) 
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Figure 3.26 - Uplift of Pre-stressed Plank  

(measured at beam-deck interface) 
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The strains in the deck are examined next.  Figure 3.27 and Figure 3.28 plot 

the load against the strains immediately adjacent to the bollard (along lines 1 and 2, 

respectively, as shown in Figure 3.21).  Figure 3.27 shows large tensile strains at the 

bottom of the deck on the southeast and southwest sides.  The strains measured more 

than thirty inches north of the bollard are very low (all below 100 microstrain).  They 

are illustrated in Figure 3.29.  Figure 3.30 and Figure 3.31 plot the strains measured by 

the gages along lines 1, 2, and 3 against the distance from the center of the bollard.  It 

is interesting to note in the figures that the concrete strains on the extreme east and 

west sides of the bollard were very low. These locations were in the adjacent precast 

planks (see Figure 3.11 and Figure 3.13). Figure 3.30 and Figure 3.31 also show that 

along line 1, the strains right at the east and west sides of the bollard are larger than 

those at the center, with the tensile strains at the bottom much larger than the 

compressive strains at the top.  
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Figure 3.27 - Concrete Strains Immediately South of Bollard (along line 1) 
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Figure 3.28 - Concrete Strains Immediately North of Bollard (along line 2) 
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Figure 3.29 - Strains at More Than 30 Inches North of Bollard (along line 3) 
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Figure 3.30 - Strains Measured at 200-Kip Load (Along lines 1, 2, & 3) 
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Figure 3.31 - Strains Measured at 400-Kip Load (Along lines 1, 2, & 3) 
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The difference in the strains at the top and the bottom of the deck can be 

caused by two factors. One is the membrane force in the deck and the other is the 

concrete cracking at the gage locations. To examine the likely-hood of the first factor, 

the “membrane” strains are calculated by averaging the top and bottom strains 

measured at each location. They are plotted against distance in the east-west direction 

in Figure 3.32 and Figure 3.33.  It can be observed that the strain values are, in 

general, very small except for one location along line 1. Along line 1, the west side 

right next to the bollard shows a very large tensile “membrane” strain. A large tensile 

membrane force in that location is, however, unlikely. Hence, this was most likely 

caused by the cracking of concrete at the bottom of the deck. The effective prestress in 

the precast planks is expected be low at the location of line 1 as it is in the stress 

transfer zone of the precast planks. The maximum tensile strain shown in Figure 3.31 

would have way exceeded the cracking strain of concrete if there was no prestress. 

  Figure 3.34 and Figure 3.35 show the calculated “bending” strains in the deck 

along lines 1, 2, and 3 (east-west direction).  They are the measured strains minus the 

membrane strains. Figure 3.36 and Figure 3.37 show the “bending” strains along lines 

A, B, and C (north-south direction). In general, the strains on the west side are higher 

than those on the east along line 1 and those on the south side of the bollard (along 

line 1) are larger than those on the north side (except along the center line of the 

bollard). Hence, line 1 is a critical bending section under the prying action of the 

bollard. This could be due to the prestress loss in the stress transfer zone of the precast 

planks, which makes the deck vulnerable to cracking and will also lead to a lower 
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moment capacity because of the lack of an embedment length. However, during the 

test, no cracks were observed with the video cameras. 
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Figure 3.32 - Calculated Membrane Strains at 200-Kip Load (Along lines 1, 2, & 3) 

-50

0

50

100

150

200

250

-60 -40 -20 0 20 40 60

<--West        East -->
Distance from Center of Bollard (in)

St
ra

in
 (x

10
^6

)

1 400 kips
2 400 kips
3 400 kips

 
Figure 3.33 - Calculated Membrane Strains at 400-Kip Load (Along lines 1, 2, & 3) 
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Figure 3.34 - Calculated Bending Strains at 200-Kip Load (Along lines 1, 2, & 3) 
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Figure 3.35 - Calculated Bending Strains at 400-Kip Load (Along lines 1, 2, & 3) 
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Figure 3.36 - Calculated Bending Strains at 200-Kip Load (Along lines A, B, & C) 
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Figure 3.37 - Calculated Bending Strains at 400-Kip Load (Along lines A, B, & C 
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4 Nonlinear Analysis  

 

4.1 Introduction 

 A multi-degree-of- freedom analytical model of the Modular Hybrid Pier 

(MHP) has been created to determine the effects of a seismic event on the structure 

and the fender system that restrains the MHP.  The fluid-structure interaction, soil 

dynamics, soil-pile interaction, and the deformability of the MHP and the mooring 

shafts are not considered in this analysis.  

The MHP can be built in multiple configurations. The number of modules, 

number of mooring shafts, and number of fenders can all be varied.  The configuration 

modeled here is a four-module arrangement, as seen in the plan view of the MHP 

shown in Figure 4.1.  Each module is 325-ft. x 88-ft. and the four modules together are 

1300-ft. long. For the analysis presented here, the floating concrete structure is 

assumed to be a rigid block sliding on a frictionless base. There is one “moon pool” in 

each of the modules.  This is a channel through the depth of a module, inside which 

 

Figure 4.1 - Plan View of the Modular Hybrid Pier 
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the mooring shaft extends.  The mooring shafts are attached to a pile cap at the sea 

floor. These mooring shafts are assumed to be rigid as well. 

The weight of the MHP is estimated to be 68,000 kips. Each module is a 

reinforced concrete box structure with interior and exterior walls. The floating 

structure is restrained from moving by the mooring shafts.  Each shaft has an 

appropriate number of fender elements in each direction. The fenders are attached to 

the MHP inside of the moon pool, but not attached to the mooring shaft. The motion 

of the structure is induced by the motions of the shafts as a result of earthquake ground 

motions introduced at the base of each shaft. 

 

Figure 4.2 - Model of Moon Pool of MHP with Fender Groups 
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According to the current design, the MHP will be restrained by two pairs of 

mooring shafts (including the optional ones shown in Figure 4.1).  Figure 4.2 shows a 

model of the moon pool with the mooring shaft and four fender assemblies. Each 

fender assembly consists of four fender elements attached to an ultra high molecular 

weight polyethylene (UHMW-PE) pad. Figure 4.3 shows a typical fender assembly 

with two fender elements.  

Three of the four shafts shown in Figure 4.1 will have two fender assemblies 

on the opposite sides to restrain pier motion in the transverse direction, and one shaft 

at a far end will be surrounded by four fender assemblies to restrain both the 

longitudinal and transverse motions of the pier. Each fender assembly will have four 

fender elements to provide the necessary resistance and energy absorption capability 

in the axial direction and to limit fender deflection in the lateral direction.  

Two different fender systems have been considered in this analysis.  One is an 

initial proposal, which called for two MV1000x1000A and two MV1000x1200A 

 

Figure 4.3 - Modular MV Fenders 
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fender elements for each of the eight fender assemblies restraining the transverse 

motion, and four MV1000x900A fender elements for each of the two fender 

assemblies restraining the longitudinal motion. The second system, which is a revised 

design, calls for larger fenders that have more deflection capability.  In this system, the 

configuration and number of fender assemblies are the same as before but each fender 

assembly consists of four MV1250x900A elements.   



88 

 

4.2 MHP Model 

As shown in Figure 4.1, the moon pools are so located that two mooring shafts 

are close to each other.  In the MHP model, each of these pairs has been idealized as 

one shaft. Each resulting shaft is located 325 ft. from each end of the 1300-ft. long 

MHP, and is centered transversely in the 88 ft. direction.  The MHP is idealized as a 

rigid body with three degrees of freedom as shown in Figure 4.4. This is deemed 

satisfactory in view of the flexibility of the fender systems as compared to that of the 

concrete structure. However, this model can be easily extended to account for the 

flexibility of the concrete structure and the mooring shafts as needed.  

With respect to the degrees of freedom shown in Figure 4.4, the equations of 

motion for the MHP can be expressed as follows: 

( , )F g+ + = −Mx Cx f x x Mx&& & & &&   (4.1) 

in which x  is the relative displacement vector that contains the displacement of the 

MHP relative to that of the shaft at each degree of freedom, gx&&  is the vector of shaft 

accelerations, which in this model are identical to the earthquake ground accelerations 

used, and ( , )Ff x x&  represents the fender forces that are dependent on the displacements 

 

Figure 4.4 - 3-DOFs of MHP 
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and velocities of the pier relative to those of the fenders. Since the fenders are 

expected to provide relatively significant damping, damping from other sources is 

assumed to be insignificant and the damping matrix C is, therefore, assumed to be 

zero. 

To calculate the inertial properties of the MHP, the contribution of the moment 

of inertia from the outside walls, inside walls, and decks in the individual modules is 

evaluated first. For simplicity, the center of mass of a module is assumed to coincide 

with the geometric centroid. According to the pier dimensions provided in the 

preliminary design drawings and the assumption that the lightweight concrete used for 

the pier has a unit weight (including the reinforcement) of 140 lbs/ft3, the mass matrix 

of each module has been estimated with respect to the degrees of freedom shown in 

Figure 4.5. 

The moment of inertia of the deck of a module about its own centroid can been 

calculated as follows. 

 
Figure 4.5 - DOFs of One Module 

2 2( )
12o

m b d
I

+
=   (4.2) 



90 

 

where m = the mass of the deck, b is the length of the module and d is the width of the 

module, as shown in Figure 4.5.  The combined Io of the two decks and the bottom 

slab has been found to be 7 23.376 10 kip in secx ⋅ ⋅ . The Io of the outside walls about the 

centroid of a module has been found to be 7 21.465 10 kip in secx ⋅ ⋅ .  The two interior 

walls are 20 ft-3 in from the center of a module.  Their Io about the centroid of the 

module has been found to be 7 21.296 10 kip in secx ⋅ ⋅ .  The total Io(Module)  of each 

module is the summation of all the contributions, which is 7 26.137 10 kip in secx ⋅ ⋅ , and 

the total mass M(Module)  of a module is  244 kip sec /in⋅ . 

The mass matrix with respect to the center of gravity of the four-module pier is 

assembled as follows.   

( )

( )
2

( ) ( )

4 0 0
0 4 0
0 0 5 4

Module

COG Module

Module o Module

M
M

b M I

 
 

=  
 + 

M  (4.3) 

where b is the length of a module.   In order to transform the coordinates with respect 

to the center of gravity to the coordinates shown in Figure 4.4, the following 

transformation matrix is used. 

1 0 0
0 0.5 0.5

1 1
0

2 2b b

 
 
 

=  
 −
 
 

T  (4.4) 

Finally, the transformed mass matrix for the 3-DOF system shown in Figure 

4.4 is calculated as follows. 
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T
COG=M T M Ti i  (4.5) 

which gives 

2

176 0 0

0 103 15      kips sec /in.
0 15 103

 
 = − ⋅ 
 − 

?  (4.6) 

To avoid an iterative solution for the nonlinear system, an explicit time 

integration method developed by Newmark (1959) is used to evaluate the response of 

the MHP to earthquake excitations.  The procedure is based on equations (4.7) through 

(4.9).  Equation (4.7) is the time discretetized equations of motion, equation (4.8) is 

the change in displacement from one time step to the next, and equation (4.9) is the 

change in velocity over the same time step. 

1 1 , 1 , 1i i F i g i+ + + ++ + = −Mx Cx f Mx&& & &&  (4.7) 

2

1 2i i i i
t

t+
∆

= + ∆ +x x x x& &&  (4.8) 

[ ]1 1(1 )i i i it γ γ+ += + ∆ − +x x x x& & && &&  (4.9) 

where t∆  is the integration time step, ? is a parameter that defines the variation of the 

acceleration over the time step, and fF,i+1 is the vector of fender forces, which depend 

on the relative displacements between the MHP and the mooring shafts and their rate 

of variation.  In this study, ? is selected to be 0.5, which results in zero numerical 
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damping. Substituting equation (4.9) into equation (4.7), and solving for the 

acceleration in the next time step results in equation (4.10). 

[ ]1
1 , 1 1 1( ) { ( , ) (1 ) }i g i i i i it tγ γ−

+ + + += + ∆ − − − + ∆ −Fx M C Mx f x x C x x&& && & & &&  (4.10) 

To calculate the response in each time step, the new relative displacement at 

each of the three degrees of freedom is calculated with equation (4.8). The 

displacements are imposed on the fender models to calculate fF,i+1.  As will be 

presented later, the fenders are modeled as dynamic systems that have natural 

frequencies much higher than those of the MHP system. Hence, to calculate the 

response of a fender to the imposed 1i+x , the equations of motion for a fender need to 

be solved with time steps much smaller than t∆ . To this end, a subincrementation 

approach is used and the displacement change within t∆  is divided into subincrements 

by linear interpolation.  Once fF,i+1 has been computed, the accelerations of the MHP 

for this step are then calculated with equation (4.10). Finally, the velocities of the 

structure are found with equation (4.9).  The analysis then moves to the next time step 

and the process is repeated.  
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4.3 Fender Model 

A Kelvin-Voight rheological model with an elastic spring element and a 

nonlinear viscous damper element has been developed to model the behavior of a 

fender element. Each fender element can deform axially and in two lateral directions 

with bending about the strong and weak axes. However, the resistance derived from 

bending about the weak axis is neglected in the model.  The model has been calibrated 

with the data provided by the manufacturer, and, in particular, the damper element has 

been calibrated with the experimental data of Phillips (1993). Currently, the model 

accounts for the following behavior of a fender. 

• Nonlinear axial load-displacement relation. 

• Linear lateral force-deformation relation. 

• Loading-rate dependency. 

• Energy dissipation. 

• Gap opening and closing between a fender and a mooring shaft. 

• Sliding of the fender pad against the mooring shaft. 

 
With this model, a fender group will exert a force on the concrete structure 

only when the fender is in contact with the mooring shaft. The model also allows for 

an initial gap between a fender and the mooring shaft. However, the initial gap is 

assumed to be zero in the analyses presented here. With the damper element, the 

fender model has a recovery rate in returning to its un-deformed state when it is 
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disengaged from the shaft.  However, the following features have no t been included in 

the current fender model but may be added in the future. 

• Influence of lateral displacement on the axial load capacity. 

• The degradation of axial load resistance with loading cycles and its recovery. 
 

Currently, experimental data on the above behavior is not available. It is expected that 

the proposed fender tests will yield more information on these. 

As will be explained below, each fender assembly is modeled as a dynamic 

system. For each fender element, or fender assembly, a set of equations of motion 

must be solved.  However, due to the nonlinear damping behavior, this is a more 

complicated process than for the MHP.  After each time increment, t∆ , the 

displacement at each degree of freedom of the MHP is subdivided by linear 

interpolation and input to the fender model, and the force imparted to the MHP is then 

computed. Figure 4.6 is a schematic of the model representing the axial behavior of a 

fender, while Figure 4.7 shows the model representing the lateral behavior.  The axial 

behavior has a gap condition, while the lateral behavior has a sliding condition when 

static friction is overcome. A “penalty spring” is introduced in each direction to 

facilitate the modeling of the gap and sliding conditions. They are elastic springs with 

stiffness AK and LK , which are considerably stiffer than the fender springs. 
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The equations of motion for a fender system can be expressed as follows. 

( , ) ( ) ( , ) 0F F D F F S F F F+ + − =M x f x x f x f x x&& &  (4.11) 

where x is the vector of the relative displacements of the MHP with respect to the 

shafts; xF is the deformation of the fender as shown in Figures 4.6 and 4.7; MF is the 

mass matrix of the fender; fD is the vector of damping forces, which are nonlinear 

functions of fender velocities and displacements; fS is the vector of static forces from 

the axial and lateral resistance of the fender, which are functions of displacements, and 

fF is the vector of forces exerted by the fender on the MHP, which are functions of the 

relative displacements between the shaft and the fender, i.e., ( F−x x ). 

 

Figure 4.6 - Schematic of Axial Fender Model 

 

Figure 4.7 - Schematic of Lateral Fender Model 
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The axial and lateral behaviors of the fender are assumed to be uncoupled, 

except for the dependence of the frictional resistance in the lateral direction on the 

normal force between the fender and the mooring shaft.   

The static axial force developed by a fender is calculated with the axial fender 

deflection.  As shown by the inset in Figure 4.8, the fenders buckle when deformed.  

The curve of the reaction force versus deflection, as shown in Figure 4.8, is provided 

by Trellex Fender Systems and can be well approximated with a fourth-order 

polynomial as shown below.  

( )4 3 2

1 2 3 4        sign( )A A A A A A
S F F F F Ff a x a x a x a x x= + + + ⋅   (4.12) 

where the values of ai can be found experimentally or from manufacturer’s data. 

 

Figure 4.8 - Typical Fender Buckling Behavior (Courtesy of Trellex Fender Systems) 
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The following dimensionless nonlinear damper model is proposed to model the 

energy-dissipation and rate-dependent behavior of a fender element. 

A
D
A

S

f
f

= ⋅ & &β
α ε ε  (4.13) 

in which ε&  is the strain rate, which can be taken to be /A
Fx H& , where H is the height 

of the fender element in the axial (loading) direction, A
Sf  is the static force, and a  and 

ß are material parameters.  

The fenders are not attached to the mooring shaft, therefore, a gap can exist 

between the shaft and the fender in the axial direction.  This can be an initial gap or a 

result of the fender deformation.  If the gap is open, then the fender force is zero.  If 

the gap is closed, then the axial penalty spring is engaged and the force is calculated 

with the linear penalty spring constant AK .  This leads to the following relationship. 

 ( ) for ( ) 0

 0 for ( ) 0

A A A A A A
F gap F gap F

A A A
F gap F

f K x x x x

f x x

= − ∆ − − ∆ − >

= − ∆ − ≤
 (4.14) 

in which gap∆  is the initial gap. The stiffness AK  of the axial penalty spring is 

assumed to be 20 times the initial stiffness of the fender. 

For the lateral resistance of a fender element, only the strong direction is 

considered.  Since a fender element is not expected to buckle under lateral loading in 

the strong direction, the lateral stiffness is assumed to be linearly elastic as follows. 
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where

L L L
S F F

L L
bending shearL

F L L
bending shear

f K x

K K
K

K K

= ⋅

=
+

 

(4.15) 

As shown above, both the bending and shear stiffnesses are considered. The 

bending stiffness can be calculated with an assumption of fixed-fixed end conditions 

as follows. 

3

12
bending

EI
K

H
=  (4.16) 

where E is the Young’s Modulus of the material, I is the moment of inertia, and H is 

the height of the element in the axial direction.  The shear stiffness is calculated with 

the following equation. 

shear
kGA

K
H

=  (4.17) 

where k is a shape factor, which is 5/6 for a rectangular section, G is the shear 

modulus, and A is the cross-sectional area of the element. 

The same damping model is used for the lateral behavior.  Hence, the damping 

force is given by 

L
D
L

S

f
f

= ⋅ & &β
α γ γ  (4.18) 



99 

 

in which γ&  is the strain rate in shear, which can be taken to be /L
Fx H& , where H is the 

height of the fender element, L
Sf  is the static lateral force, and a  and ß are material 

parameters, which can assume the same values as those for the axial direction. 

The penalty spring stiffness LK can be assumed to be 20 times the lateral fender 

stiffness L
FK .  The lateral fender force is non-zero only if the fender is in contact with 

the mooring shaft.  The fender force can be determined with the following rate 

equation.   

 ( )L L L L
F Ff K x x= −& & &  (4.19) 

with 

L A
F Ff fµ≤  (4.20) 

in which µ is the coefficient of friction. The magnitude of the lateral fender force is 

limited by the frictional resistance between the mooring shaft and the ultra high 

molecular weight polyethylene (UHMW-PE) pad of a fender assembly. 

The explicit Newmark integration method is utilized to solve for the 

displacements, velocities, and accelerations of a fender under an imposed relative 

displacement vector x.  However, because of the nonlinear damping, an iterative 

solution scheme is required even for the explicit integration method. The integration 

time step tδ  used here needs to be much smaller than the t∆  used to compute the 

response of the MHP because of the high natural frequencies of a fender assembly. 
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The time discretized equations of motion for a fender assembly can be 

expressed as follows together with the displacement and velocity approximations.  

, 1 , 1 , 1 , 1 1 , 1( , ) ( ) ( , ) 0F F i D F i F i S F i F i F i+ + + + + ++ + − =M x f x x f x f x x&& &  (4.21) 

2

, 1 , , ,2F i F i F i F i
t

t
δ

δ+ = + +x x x x& &&  (4.22) 

, 1 , , , 1(1 )F i F i F i F itδ γ γ+ + = + − + x x x x& & && &&  (4.23) 

where xF is the vector of fender displacements. In this analysis, ? is 0.5. Equation 

(4.23) can be rearranged to: 

, 1 , ,
, 1

( 1)F i F i F i
F i t

γ
δ γ γ
+

+

− −
= +

x x x
x

& & &&&&  (4.24) 

Substituting equation (4.24) into the equations of motion, equation (4.21), yields: 

, 1 , ,
, 1 , 1 , 1 1 , 1

( 1)
( , ) ( ) ( , )F i F i F i

F D F i F i S F i F i F it

γ

δ γ γ
+

+ + + + +

− − 
+ + + − = 

 

x x x
M f x x f x f x x 0

& & && &  (4.25) 

which leads to 

, 1
, 1 , 1 1( , )F F i

D F i F i itδ γ
+

+ + ++ =
M x

f x x f
& &  (4.26) 

where 

,
1 1 , 1 , 1 ,( , ) ( ) ( 1) F iF

i F i F i S F i F i t+ + + +

 
= − − − − 

 

xMf f x x f x x
&&&γ

γ δ
 (4.27) 

in which 1i+x  is given and , 1F i+x  can be calculated with equation (4.22). Hence, as 

shown in equation (4.27), f i+1 is a vector of known quantities in each time step, and 
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therefore, the equilibrium shown in equation (4.26) depends only on the current step’s 

velocities, which are not known. The velocities have to be found with a Newton 

iteration method as follows.  With each trial solution , 1
trial
F i+x& , we have a residual R. 

, 1 , 1 , 1 1( , )trial trialF
F i D F i F i itδ γ + + + +

 
= + − 

 

MR x f x x f& &  (4.28) 

The goal is to find the exact solution, , 1F i+x& , which results in a residual of 0, i.e.,  

, 1 , 1 , 1 1( , )F
F i D F i F i itδ γ + + + +

 
= + − 

 

M
0 x f x x f& &  (4.29) 

 
Subtracting equation (4.28) from equation (4.29) results in the following equation. 

, 1
F

F i Dt
δ δ

δ γ + + = −
M

x f R&  (4.30) 

where 

, 1 , 1 , 1
trial

F i F i F iδ + + += −x x x& & &
 (4.31) 

, 1, , 1, , 1 , 1,( ) ( , )trial
D D F i F i D F i F iδ + + + += −f f x x f x x& &

 (4.32) 

Introducing the tangent damping matrix, Ct, at the current trial solution, we have  

, 1D t F iδ δ +≈f C x&  (4.33) 

where 



102 

 

0
0

A
tD

t L
F t

Cd
d C

 
= =  

 

fC
x&  (4.34) 

in which Df  is given by equations (1.13) and (1.18). Hence,  

( )

( )

1

1

1

( )

( )

sign( )
( )

               
( )

               (1 )

AA A
FA D D

t A AA
F FF

A
S A A

F F A
F

AA
FF

A
S A

F

d xdf df
C

dx dxd x

f
d x x

L d x

dxd x

f
x

L

+

+

+

+
= = ⋅

+

 
 +
  + = ⋅

+

= + +

&
& &&

& &
&

&&

&

β

β

β

β

δ

δ

α
δ

δ

δ

α
β δ

 
(4.35) 

( )

( )

1

1

1

( )

( )

sign( )
( )

     
( )

     (1 )

LL L
FL D D

t L LL
F FF

L
S L L

F F L
F

LL
FF

L
S L

F

d xdf df
C

dx dxd x

f
d x x

L d x

dxd x

f
x

L

+

+

+

+
= = ⋅

+

 
 +
  + = ⋅

+

= + +

&
& &&

& &
&

&&

&

β

β

β

β

δ

δ

α
δ

δ

δ

α
β δ

 
(4.36) 

Since ß is in general negative, equations (1.13) and (1.18) will lead to an infinitely 

large damping coefficient when the velocity becomes zero. To avoid this problem, a 

very small constant δ  is introduced in the above expressions. Substituting equation 

(4.33) into equation (4.30), one can solve for the incremental change in velocity as 

follows. 
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1

, 1
F

F i tt
δ

δ γ

−

+
 

= − + 
 

M
x C R&  (4.37) 

A new trial velocity is found with: 

, 1 , 1 , 1
newtrial trial
F i F i F iδ+ + += +x x x& & &  (4.38) 

This value is then used in equation (4.28) to find a new residual and the process is 

repeated until the residual is below a chosen tolerance.  For efficiency, the velocities 

of the previous time step can be used as the initial trial values. Finally, the 

accelerations are calculated with equation (4.24). The next increment of x  is then 

imposed and the computation is repeated. The fender forces are sent back to the MHP 

model once the entire increment for the time interval t∆  has been imposed. 
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Summary of Solution Scheme 

Given: 

,0

,0

,0

 = number of time steps t
 with =1, ... , i

F

F

F

N
i N

δ
x

x

x

x

&
&&

 

1. Set: i = 0 

2. Calculate , 1F i+x  with equation (4.22). 

3. Calculate , 1
A

S if +  with equation (4.12). 

4. Calculate . 1
A

F if + with equation (4.14). 

5. Choose a trial velocity: ,
, 1 ,

Atrial A
F i F ix x+ =& & . 

6. Find 1
A
iϕ + with equation (4.27). 

7. Compute residual RA with equations (4.27), (4.28), and (4.13). 

8. Check if RA is below tolerance, and go to step 12 if true. 

9. Calculate , 1
A
F ixδ +&  with equations (4.37) and (4.35). 

10. Find ,
, 1

Anewtrial
F ix +& with equation (4.38). 

11. Go to step 7. 

12. Set , 1
A
F ix +& = ,

, 1
Anewtrial
F ix +& . 

13. Calculate , 1
A
F ix +&&  with equation (4.24). 

14. Calculate , 1
L

S if +  with equation (4.15). 
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15. Calculate , 1
L

F if + with the following equations. 

( ) { }
( )

, 1 , 1 , 1 , 1 ,

, 1 , 1

if 0 , then ( ) ( )

if 0 , then 0

A L L L L L L L
F i F i F i i F i i F i

A L
F i F i

f f f K x x x x

f f

+ + + +

+ +

> = + − − −

= =

( ), 1 , 1 , 1 , 1 , 1if , then sign( )L A L A L
F i F i F i F i F if f f f f+ + + + +≥ =µ µ  

16. Choose a trial velocity: ,
, 1 ,

Ltrial L
F i F ix x+ =& & . 

17. Find 1
L
iϕ +  with equation (4.27). 

18. Compute residual RL with equations (4.27), (4.28), and (4.18). 

19. Check if RL is below tolerance, and go to step 23 if true. 

20. Calculate , 1
L
F ixδ +&  with equations (4.37) and (4.36). 

21. Find ,
, 1

Lnewtrial
F ix +& with equation (4.38). 

22. Go to step 18. 

23. Set , 1
L
F ix +& = ,

, 1
Lnewtrial
F ix +& . 

24. Calculate , 1
L
F ix +&&  with equation (4.24). 

25. When i< N, set i = i +1, and go to step 2. 

26. Set ,0 ,F F N=x x , ,0 ,F F N=x x& & ,and ,0 ,F F N=x x&& && . 

27. Send fender forces fF,N to the MHP model. 
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4.3.1 Fender Model Calibration 

The static axial load-deformation relation for the fenders is deduced from the 

data provided by the manufactured based on a decreasing velocity test method and the 

calibrated theoretical rate model shown in Figure 4.11, which will be explained later. 

Based on the test data provided by the manufacturer (Trelleborg 2007), the following 

fourth-order polynomial is proposed to model the static axial load-deformation 

behavior of an MV1000x1000A fender element. 

( )4 3 2
 = 0.0024  - 0.0735  + 0.0899  + 12.487 ( )A A A A A A

S F F F F Ff x x x x sign x⋅  kips (4.39) 

in which Fx  is the fender deformation in inches. The static resistance of a fender 

element of other cross-sectional lengths can be scaled accordingly. The above curve is 

shown in Figure 4.9 
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Figure 4.9 - Static Force-Deflection Curve for MV1000x1000A Fender Element 
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The load-deflection properties of an MV1250x900A element have also been 

estimated. This fender has more deformation capacity. With the manufacturer’s target 

maximum deflection of 57.5%, it allows for over 28 in of deflection, as opposed to 

22.6 in for the MV1000 fender. The following fourth-order polynomial is obtained for 

the static axial load-deformation behavior of an MV1250x900A fender element.  

( )4 3 2
 = 0.0011  - 0.0408  + 0.0624  + 10.836 sign( )A A A A A A

S F F F F Ff x x x x x⋅  kips (4.40) 

in which A
Fx  is in inches. 
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Figure 4.10 - Static Force-Deflection Curve for MV1250x900A Fender Element  
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The lateral stiffness of a fender is found using equations (4.15) through (4.17), 

which lead to 

3

3

12

12
L L

S F

EI kGA
H Hf x
EI kGA

H H

 ⋅ 
=  

 +
 

 (4.41) 

with 

3

12

2(1 ) 3

wL
I

E E
G

A wL
ν

=

= =
+

=

 
(4.42) 

where E is the Young’s modulus, H is the height of the fender in the axial direction, 

and L is the length and w the width of the fender element cross section.  Poisson’s 

ratio of the rubber material is assumed to be 0.5. The Young’s modulus is estimated 

with the initial axial stiffness of a fender element as given by equation (1.39) or (1.40). 

In the analysis,  E is assumed to be 1 ksi. 
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The damping model has been calibrated with the test data of Phillips (1993) 

obtained from fender element samples of the same material but of smaller size 

(MV54x54A).  The damping force from the tests has been obtained by subtracting the 

static resistance from the total force. It is then normalized by the static resistance and 

plotted against the strain rate as shown in Figure 4.11. The static resistance is assumed 

to be the force obtained at the slowest strain rate attained in the tests, which is of 0.05 

mm/sec.  A least-squares fit has been used to determine the values of a and ß. The 

value of a has been found to be 1.21 and that of ß is -0.55.  To avoid an infinitely large 

damping coefficient when the velocity becomes zero, a δ  of 0.0000001 is used.  With 

equation (4.13), the axial damping force of a fender element can be calculated as 

( ) ( )( 1)

A
SA A A A

D S

f
f f x x

H

ββ

β

α
α ε ε δ δ+

⋅
= ⋅ = + +& & & &  (4.43) 
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Figure 4.11 - Normalized Damping Force vs. Strain Rate 
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Similarly, for the lateral direction, 
 

( ) ( )( 1)

L
SL L L L

D S

f
f f x x

H

ββ

β

α
α ε ε δ δ+

⋅
= ⋅ = + +& & & &  (4.44) 

 
From previous tests (Lee et al. 2008), the coefficient of friction between the UHMW-

PE pad and the mooring shaft is about 0.15.  This agrees well with the manufacturer’s 

recommendations and is used in the analysis.  

To model the gap condit ion, each fender assembly has to be treated as a 

dynamic system with its mass considered.  Each fender assembly consists of four 

fender elements with an ultra high molecular weight polyethylene (UHMW-PE) pad 

that has a unit weight of 56.7 lb/ft3 (0.94 g/cm3) and a weight of 316 lbs (143 kg) for 

the smaller fender system and 492 lbs (224 kg) for the larger system.  The weight of a 

fender assembly is assumed to be ½ of that of the elements and the entire weight of the 

UHMW pad.  A four MV1000x900A element fender assembly weighs 2 kips, a two 

MV1000x1000A plus two MV1000x1200A element fender assembly weighs 2.5 kips, 

and a four MV1250x900A element assembly weighs 3.2 kips. 

For the validation of axial behavior, the MV1000x1000A fender element 

model is subjected to shifted cosine wave functions with maximum velocities of about 

3, 6, and 12 in./sec., respectively.  The force-displacement responses of the model to 

these loading conditions are plotted in Figure 4.12. 
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Figure 4.12 - MV1000x1000 Fender Element Subjected to Harmonic Loading 
 

The fender model is also subjected to concurrent axial and lateral 

deformations.  Results from two cases are shown in Figure 4.13 through Figure 4.16. 

Both cases are for an MV1250x900A fender element.  Case 1 consists of an imposed 

axial displacement that varies linearly with time up to 12 in within 7.5 seconds, after 

which the displacement is held constant. After 7.5 seconds, with its axial displacement 

held constant, the fender is loaded laterally to 10 in. of deformation.  Figure 4.13 and 

Figure 4.14 clearly show the decay of the axial damping force and the slipping in the 

lateral direction at a lateral load of 15% of the axial force.  Note the small difference 

in the imposed axial displacement and the response.  This is due to the compression of 

the penalty spring. 

Case 2, whose results are plotted in Figure 4.15 and Figure 4.16, has a similar 

loading scheme as Case 1 except that the axial load is removed after 12.5 seconds. The 

rebound of the fender in both the axial and lateral directions can be seen. 
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Figure 4.13 - Axial Response of Fender Element (Case 1) 
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Figure 4.14 - Lateral Response of Fender Element (Case 1) 
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Figure 4.15 - Axial Response of Fender Element (Case 2) 
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Figure 4.16 - Lateral Response of Fender Element (Case 2) 
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4.4 Seismic Analyses 

The natural frequencies of the MHP in the longitudinal and transverse 

directions are 15 and 8 sec, respectively. Four groups of earthquake ground motion 

records are considered in the seismic analyses. They are provided by URS 

Corporation. Each group has five records. The first two groups are representative of 

free-field ground motions at the mud-line level for the San Diego Bay with return 

periods of 475 and 975 years, respectively. The third and forth groups have the same 

return periods but are representative of ground motions 69 ft. (21m) below the mud-

line at the same elevation as the base of the pile groups supporting the mooring shafts. 

The latter motions are derived from those at the mud-line using a deconvolution 

analysis.  The motions at the mud-line level are scaled ground motions from the 1979 

Imperial Valley, 1995 Kobe, 1999 Kocaeli, 1992 Landers, and 1989 Loma Prieta 

Earthquakes.  The response spectra of the ground motions are shown in Figure 4.17. 

The first two fundamental periods of the MHP are 8 and 15 sec. As can be seen from 

the figure, for these periods, the ground motions at the two elevations will result in the 

same spectral accelerations. Hence, only the results for the motions 69 ft. (21 m) 

below the mud-line are presented here.  The integration time step, t∆ , for the MHP 

analysis is the same as the time discretization intervals of the earthquake records.  This 

value is 0.005 sec for all of the records except for the Kobe record.  The time interval 

is 0.02 sec for the Kobe record.  The integration time step, tδ , for evaluating the 

fender response is 0.001 sec in all cases. 
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Figure 4.17 - Response Spectra of Earthquake Ground Motions (Courtesy of URS) 
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In the analyses, the same ground motion record is applied simultaneously in 

the longitudinal and transverse directions to represent the worst scenario. All fender 

assemblies in the transverse direction experience more or less the same displacements. 

The yaw of the MHP is negligible 

Figure 4.18 and Figure 4.19 show the relative displacements of the MHP with 

the MV1000 fender system for the El Centro and Kobe grounds motions that have a 

return period of 975 years. The displacements are with respect to the positions of 

mooring shafts. It can be observed that the peak relative displacements obtained 

exceed the allowable displacement for the fender system. Since only one fender 

system is engaged in the axial or lateral direction at each location at a time, the solid 

and dashed lines in the plots represent different fender assemblies.   This prompted a 

change in the size of the fender elements to MV1250. 
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Figure 4.18 - Seismic Response with MV1000 under 
1979 Imperial Valley - El Centro (975-year) 
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Figure 4.19 - Seismic Response with MV1000 under 
1995 Kobe, Japan - KJMA (975-year) 
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With the revised fender system (MV1250x900A), the responses of the MHP to 

the ten earthquake records are analyzed. The results of the analyses are presented in 

Figure 4.20 through Figure 4.29. In each figure, the acceleration, velocity, and 

displacement time histories of the earthquake ground motion are presented. The 

displacement of the ground and the relative displacements of the MHP in the 

longitudinal and transverse directions are plotted together. Below these three graphs, 

the responses of the fender assemblies in the longitudinal and transverse directions are 

plotted.  The responses of the transverse fenders at degree-of- freedom 2 and 3, as 

identified in Figure 4.4, are very similar and, therefore, only one is presented here.  

For each of the principle directions of the MHP, four plots are presented with a total of 

eight plots.  The axial and lateral forces of a four-element fender assembly are each 

plotted against the relative displacements of the MHP in each of the principle 

directions.  Since only one fender system is engaged in the axial or lateral direction at 

each location at a time, the solid and dashed lines in the plots represent different 

fender assemblies.  The scales for the axial and lateral forces differ significantly, as 

the lateral force is in general an order of magnitude smaller than the axial force. The 

axial and lateral displacement time histories of the fenders are shown in the last four 

plots of each figure. It can be observed that the displacements of the fenders are within 

the allowable limits for all cases. 
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Figure 4.20 - Seismic Response with MV1250 under 

1979 Imperial Valley - El Centro (475-year) 
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Figure 4.21 - Seismic Response with MV1250 under 

1979 Imperial Valley - El Centro (975-year) 
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Figure 4.22 - Seismic Response with MV1250 under 1995 Kobe, Japan (475-year) 
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Figure 4.23 - Seismic Response with MV1250 under 1995 Kobe, Japan (975-year) 
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Figure 4.24 - Seismic Response with MV1250 under 

1999 Kocaeli - Yarimca (475-year) 
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Figure 4.25 - Seismic Response with MV1250 under 

1999 Kocaeli - Yarimca (975-year) 
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Figure 4.26 - Seismic Response with MV1250 under 

1992 Landers - Lucerne (475-year) 
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Figure 4.27 - Seismic Response with MV1250 under 

1992 Landers - Lucerne (975-year) 
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Figure 4.28 - Seismic Response with MV1250 under 1989 Loma Prieta (475-year) 
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Figure 4.29 - Seismic Response with MV1250 under 1989 Loma Prieta (975-year) 
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5 Conclusion 

5.1  Summary 

During the load test of the operations deck of the modular hybrid pier behaved 

in a linear manner up to the maximum applied load of 500 kips, as predicted by the 

finite element analyses. However, the deck exhibited a little cracking near the drain 

hole, which was probably due to the reduction of the pre-compression at the bottom of 

the deck in the stress transfer zone for the prestress tendons as well as the stress 

concentration introduced by the drain hole. The cracks were first observed at a load of 

500 kips on the west side of the load, but they could have occurred earlier. They 

closed upon load release. Large tensile strains were also measured at the bottom of the 

deck on the west side of the load, indicating a high possibility of concrete cracking. In 

spite of this, the deck performed in a satisfactory manner without structural damage 

during the load test. 

There was no observable damage in the operations deck of the modular hybrid 

pier during the bollard test, and the bollard performed according to the design 

requirements in terms of the load capacity.  However, the large tensile strains observed 

at the bottom of the deck on the south side of the bollard could be an indication of 

minor flexural cracks, which are not of a concern from the serviceability standpoint. 

There was significant sliding of the bollard base even at the service load level of 200 

kips due to the size difference of the anchor bolts and the bolt holes in the deck and 

also the fact that the bolts were not tightened enough to develop the necessary friction.  
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The base sliding and uplift and the friction in the moving components are the main 

cause of the nonlinear load-displacement relation of the bollard observed in the test.  

However, the strains at the base of the bollard cylinder exhibit a linear relation with 

the applied load. The loading apparatus performed according to design and can be 

used in future tests.  The observed performance of the bollard-deck system is 

consistent with the results of the pre-test analyses, which include nonlinear finite 

element modeling. However, the pre-test finite element model of the pier showed a 

lower stiffness than the test results. 

The analysis and test results have indicated that the base plate of the bollard 

can be assumed rigid in assessing the tensile stress in the anchor bolts, and that the 

concrete infill can be ignored in calculating the tensile strain in the bollard cylinder 

using the simple beam theory. Furthermore, the effective bending width of the deck in 

resisting the prying action of the bollard can be conservatively assumed to be 10 ft., 

which is about three times the dimension of the bollard base plate. 

The seismic analysis was instrumental in assessing the feasibility of the initial 

fender configuration.  Having found this design to be inadequate, the model was used 

to validate the redesigned configuration.   
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5.2 Other Considerations and Recommendations for Future Work 

Currently, there is little experimental data available on the punching shear 

capacity of concrete slabs made of high-strength concrete or subjected to a high 

prestress level. Further experimental study of this issue is needed to acquire 

appropriate data to evaluate the current ACI provisions. Finite element models have 

their limitation in capturing the punching shear capacity of a slab, due to stress 

locking, and should only be used with caution. 

The performance of the operations deck of the modular hybrid pier studied 

here satisfies the design requirements.  However, the design seems to be a little 

conservative and could probably be further optimized to reduce the weight and cost. 

Currently, there is a trend towards double-decked piers in traditional pier 

construction, as well as for modular hybrid piers. These would have similar bollard 

design and installations. This study has not provided a conclusive assessment of the 

load capacity of the weld at the base of the bollard cylinder because of possible 

limitations of the constitutive models used in the finite element analysis. The capacity 

of a bollard under different horizontal angles of applied load is also worth further 

investigation. Laboratory testing of bollards to failure will clarify these issues and 

provide a definitive assessment of the finite element modeling capability. 

The sliding of a bollard is an issue. The clearance between an anchor bolt and 

the bolt hole should be reduced or adequate tension needs to be specified for the 

anchor bolts to develop sufficient friction to prevent sliding. The use of a rubber pad 
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between a bollard and the deck may also reduce the friction. It can be replaced by 

hydrostone to provide a good contact surface. 

Further laboratory tests would be invaluable in calibrating the seismic model.  

The addition of fluid-structure interaction, the soil dynamics of the site and the soil-

pile system, and the deformability of the MHP and the mooring shaft would add to the 

accuracy and completeness of the model.



134 
 

6 Bibliography 

1. ABAQUS Manual (2006): Example Problems, Verification, Theory. Version 6.61, 
Hibbit, Karlsson and Sorenson, Inc. 

2. ACI-318 (2005). Building Code Requirements for Reinforced Concrete. 
American Concrete Institute, Farmington Hills, MI. 

3. Bogage, A. et al. (2007). Bollard Capacity Test for a Modular Hybrid Pier. 
UCSD SSRP-07/26. UC San Diego. 

4. Bogage, A. et al. (2007). Load Capacity Tests of Operations Deck of a Modular 
Hybrid Pier.  UCSD SSRP-07/25. UC San Diego. 

5. Chopra, A. (2001). Dynamics of Structures, Second Edition, Prentice Hall. 

6. Lee, J. et al. (2008). Modular Hybrid Pier Structural Capacity Tests: Short Term 
Fender Tests. UCSD SSRP-07/27. UC San Diego. 

7. Trelleborg Marine Systems. (2007).Safe Berthing and Mooring. Trelleborg. 

8. Wong, I. et al. (2008). Site-Specific Probabilistic Seismic Hazard Analysis and 
Development of Time Histories for the Prototype MHP Mooring System Design. 
URS Corporation.  



135 
 

 

7 Appendix 

MatLab software used in analysis. 
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%**************************************************************** 
%***                                                          *** 
%***              Seismic Non-Linear MHP Analysis             *** 
%***                                                          *** 
%***  Programmer                 :        Adam Bogage         *** 
%***  Date                       :        Spring 2008         *** 
%***  Version                    :        3.0                 *** 
%***  Advisor                    :        Professor Shing     *** 
%***  File Name                  :        Final_MHP.m         *** 
%***                                                          *** 
%**************************************************************** 
%**************************************************************** 
 
function [] = Final_MHP() 
 
close all 
clear all 
clc 
 
fprintf(1,'\nSeismic Analysis of the Modular Hybrid Pier\n'); 
fprintf(1,' \n'); 
fprintf(1,'\n'); 
 
% Fenders 
for i=1:6 
     
% fenderProp(i).mass = 3.2/(32.2*12); % UHMW PE pad and 1/2 of fenders  
% fenderProp(i).length = 35.43; % in inches (900 mm) 
% fenderProp(i).height = 49.2; % in inches (1250 mm)  
% fenderProp(i).width = 15.79; % in inches (401 mm)  
% fenderProp(i).youngs =  1; %ksi 
% fenderProp(i).gap= 0;  % in inches (each side of mooring column) 
% fenderProp(i).NumAxial = 8; % Number of Axial fender elements 
%      
%  
% if ( i==1 || i == 2) 
%     fenderProp(i).NumAxial = 4; % Number of Axial fender elements 
% end 
     
     
    if ( i==1 || i == 2) 
fenderProp(i).mass = 2.076/(32.2*12); % UHMW PE pad and 1/2 of fenders  
fenderProp(i).length = 35.4; % in inches (900 mm) 
fenderProp(i).height = 39.4; % in inches (1000 mm)  
fenderProp(i).width = 12.7; % in inches (322 mm)  
fenderProp(i).youngs =  1; %ksi 
fenderProp(i).gap= 0.01;  % in inches (each side of mooring column) 
fenderProp(i).NumAxial = 4; % Number of Axial fender elements 
 
    else  
fenderProp(i).mass = 2.469/(32.2*12); % UHMW PE pad and 1/2 of fenders  
fenderProp(i).length = 43.3; % in inches (900 mm) 
fenderProp(i).height = 39.2; % in inches (1000 mm)  
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fenderProp(i).width = 12.7; % in inches (322 mm)  
fenderProp(i).youngs =  1; %ksi 
fenderProp(i).gap= 0.01;  % in inches (each side of mooring column) 
fenderProp(i).NumAxial = 8; % Number of Axial fender elements 
     
   end 
 
% Deformation (Axial, Lateral) 
fenderDef(i).uD = zeros(2,1);  % Displacement (in inches) 
fenderDef(i).uDdot = zeros(2,1);   % Velocity 
fenderDef(i).uDddot = zeros(2,1);  % Acceleration 
% Force  
fenderForce(i).RLat(1) = 0;  % Lateral Force Tracking 
fenderForce(i).RAxial = 0; % Axial Force Tracking 
end 
 
% Initial Constants  
% MDOF for MHP 
Sv = zeros(3,1);     % Displacement 
Svdot = zeros(3,1);  % Velocity 
Svddot = zeros(3,1);  % Acceleration 
 
% Timestep 
% see forcing function for EQ 
dT = .001;        % Timestep for fender 
 
M = Mass();    % Initialize Mass Matrix 
 
% Newmark Constants  
gamma = .5; 
 
% Initialize Damping (MHP not Fender (Fluid/Structure) 
 
% Damping Ratio chosen 
% z = 0.00; 
% w1 = 0.477; 
% w2 = 0.954; 
 
% Create Rayleigh Damping Matrix 
%a0 = (z*2*w1*w2)/(w1+w2); 
%a1 = z*2/(w1+w2); 
%C = a0*M + a1*K 
 
% Forcing Function (Time must be updated above) 
fid = fopen('loma975.txt','r');  
EQData = fscanf(fid,'%g'); 
fclose(fid); 
deltaT = .005;    % Timestep for Pier (from EQ in seconds) 
 
%      
    f = 1 * EQData * 32.2*12; % % of EQ in in/s^2 
    fdot = cumsum(f)*deltaT;  fdot = fdot - mean(fdot); % vel 
    fpos = cumsum(fdot)*deltaT;  fpos = fpos - mean(fpos); %disp 
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    % Forcing Function 
    forcing = f * ones(1,3);  
      
    F = M * forcing'; 
 
length = size(f); 
 
i = 1; 
 
while (i < length(1)) 
 
     
    % MHP displacement step 
    Sv(:,i+1) = Sv(:,i) + deltaT*Svdot(:,i) + (deltaT^2/2)*Svddot(:,i);  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Force from non-linear fender % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    % Total Disp vector 
 
    changeDisp = (Sv(:,i+1) - Sv(:,i)); % change in MHP displacement (i step) 
    steps = deltaT/dT; % Number of fender steps per MHP step 
    stepsize = changeDisp / steps; % step for fender (j) iterations 
         
    for p=1:3 
 
        if stepsize(p) ~=0 
            disp(p,:) = Sv(p,i):stepsize(p):Sv(p,i+1); 
        else 
           for w = 1:(steps+1) 
             
            disp(p,w) = (Sv(p,i+1)) ; % Creates vectors of if no change 
         
           end 
 
         end 
 
    end 
     
 
        %fender loops 
        for fnum = 1:6 
             
        [newDef,newForce] = 
Fender_final(steps,disp,fenderProp(fnum),fenderDef(fnum).uD(:,i),fenderDef(fnum).uDdot(:,i),fenderD
ef(fnum).uDddot(:,i),fenderForce(fnum).RAxial,fenderForce(fnum).RLat(i),fnum);          
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        fenderDef(fnum).uD(1,i+1) = newDef.vD(1); 
        fenderDef(fnum).uDdot(1,i+1) = newDef.vDdot(1);  
        fenderDef(fnum).uDddot(1,i+1) = newDef.vDddot(1); 
        fenderDef(fnum).uD(2,i+1) = newDef.vD(2);  
        fenderDef(fnum).uDdot(2,i+1) = newDef.vDdot(2);  
        fenderDef(fnum).uDddot(2,i+1) = newDef.vDddot(2); 
         
        fenderForce(fnum).RAxial = newForce.RAxial;  
        fenderForce(fnum).RLat(i+1) = newForce.RLat; 
         
        end 
 
        % Axial Force from Fenders in Global 
        R(1, i+1) = (fenderForce(1).RAxial + fenderForce(2).RAxial );  % Force in Long. Direction 
        R(2, i+1) = (fenderForce(3).RAxial + fenderForce(4).RAxial ); % Force in Transverse 1 
        R(3, i+1) = (fenderForce(5).RAxial + fenderForce(6).RAxial ); % Force in Transverse 1 
                 
        % Lateral Force from Fenders in Global 
         
        RL(1, i+1) = (fenderForce(3).RLat(i+1) + fenderForce(4).RLat(i+1) + fenderForce(5).RLat(i+1) + 
fenderForce(6).RLat(i+1)); 
        RL(2, i+1) = (fenderForce(1).RLat(i+1) + fenderForce(2).RLat(i+1)); % Force in Transverse 1 
        RL(3, i+1) = 0; % Force in Transverse 2 
           
         
        % Vector of Forces for plotting 
              
        for w=1:6 
            Fplot(w,i+1) = fenderForce(w).RAxial; 
            LatPlot(w,i+1) = fenderForce(w).RLat(i+1); 
        end 
         
    %Calculate Acceleration Step 
     
    %vddot(:,i+1) = inv(M+deltaT*gamma*C)*(F(:,i+1)-R(:,i+1)-C*(vdot(:,i)+deltaT*(1-
gamma)*vddot(:,i))); 
    Svddot(:,i+1) = inv(M)*(F(:,i+1)-R(:,i+1)+ RL(:,i+1)); 
     
    %Calculate Velocity Step 
    Svdot(:,i+1) = Svdot(:,i) + deltaT*((1-gamma)*Svddot(:,i)+ gamma*Svddot(:,i+1));  
 
    time(i+1) = i*deltaT; 
    i = i+1; 
 
      
end 
 
 
figure('DefaultAxesFontSize',16); 
 
subplot(3,1,1) 
 
plot(time,f,'k', 'LineWidth',2); 
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title('Ground Acceleration','fontsize',16) 
ylabel('Acceleration (in/sec^2)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
axes('fontsize',16) 
subplot(3,1,2) 
plot(time,fdot,'k', 'LineWidth',2); 
title('Ground Velocity','fontsize',16) 
ylabel('Velocity (in/sec)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
 
subplot(3,1,3) 
plot(time,fpos,'k', 'LineWidth',2); 
hold on 
plot(time,Sv(1,:),'--r', 'LineWidth',2); 
plot(time,Sv(2,:),'-.b', 'LineWidth',2); 
title('Ground Displacement','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
legend('Ground','Longitudinal','Transverse') 
 
 
% to plot 0 axes lines 
xline1 = (-35:35:35); 
xline2(3) = (0); 
yline1 = (-750:750:750); 
yline2(3) = (0); 
 
figure('DefaultAxesFontSize',16); 
 
subplot(2,2,1) 
plot (Sv(1,:),Fplot(1,:), 'b', 'LineWidth',2) 
hold on 
 
plot (Sv(1,:),Fplot(2,:), ' --r', 'LineWidth',2) 
plot (xline1, xline2,'k') 
plot (yline2,yline1,'k') 
axis([-35,35,-750,750]) 
set(gca,'XTick',-35:5:35) 
set(gca,'YTick',-750:250:750) 
title('Axial Fender Force vs. MHP Displacement (Longitudinal)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
 
subplot(2,2,3) 
plot (Sv(2,:),LatPlot(1,:),'--r', 'LineWidth',2) 
hold on 
grid on 
plot (Sv(2,:),LatPlot(2,:), 'b', 'LineWidth',2) 
 
title('Lateral Fender Force vs. MHP Displacement (Longitudinal)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
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subplot(2,2,2)        
plot (Sv(2,:),Fplot(5,:)/2, 'b', 'LineWidth',2) 
hold on 
 
plot (Sv(2,:),Fplot(6,:)/2, '--r', 'LineWidth',2) 
 
plot (xline1, xline2,'k') 
plot (yline2,yline1,'k') 
axis([-35,35,-750,750]) 
set(gca,'XTick',-35:5:35) 
set(gca,'YTick',-750:250:750) 
title('Axial Fender Force vs. MHP Displacement (Transverse)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
subplot(2,2,4) 
plot (Sv(1,:),LatPlot(5,:), ' --r', 'LineWidth',2) 
hold on 
grid on 
plot (Sv(1,:),LatPlot(6,:), 'b', 'LineWidth',2) 
 
title('Lateral Fender Force vs. MHP Displacement (Transverse)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
 
figure('DefaultAxesFontSize',16); 
 
subplot(2,2,1) 
plot (time,fenderDef(1).uD(1,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(2).uD(1,:), ' --r', 'LineWidth',2) 
title('Axial Fender Displacement (Longitudinal)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
 
subplot(2,2,2) 
plot (time,fenderDef(3).uD(1,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(4).uD(1,:), ' --r', 'LineWidth',2) 
title('Axial Fender Displacement (Transverse)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
 
subplot(2,2,3) 
plot (time,fenderDef(1).uD(2,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(2).uD(2,:), ' --r', 'LineWidth',2) 
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title('Lateral Fender Displacement (Longitudinal)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
 
subplot(2,2,4) 
plot (time,fenderDef(3).uD(2,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(4).uD(2,:), ' --r', 'LineWidth',2) 
title('Lateral Fender Displacement (Transverse)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
 
%title('1979 Imperial Valley - El Centro #5 (475 year)') 
%title('1979 Imperial Valley - El Centro #5 (975 year)') 
%title('1995 Kobe, Japan - KJMA (475 year)') 
%title('1995 Kobe, Japan - KJMA (975 year)') 
%title('1999 Koccaeli - Yarimca (475-year)') 
%title('1999 Koccaeli - Yarimca (975-year)') 
%title('1992 Landers - Lucerne (475 years)') 
%title('1992 Landers - Lucerne (975 years)') 
%title('1989 Loma Prieta - LGPC (475 year)') 
%title('1989 Loma Prieta - LGPC (975 year)') 
 
% figure         
% plot (v(3,:),Fplot(5,:), 'b', 'LineWidth',2) 
% hold on 
% plot (v(3,:),Fplot(6,:), 'b', 'LineWidth',2) 
% title('Force inparted to MHP from fenders') 
% xlabel('Disp') 
% ylabel('Force') 
 
 
fprintf(1,'\nSeismic Analysis Successful\n'); 
fprintf(1,'\nSee Output\n'); 
fprintf(1,' \n'); 
 
end 
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%**************************************************************** 
%***                                                          *** 
%***              Seismic Non-Linear MHP Analysis             *** 
%***                                                          *** 
%***  Programmer                 :        Adam Bogage         *** 
%***  Date                       :        Spring 2008         *** 
%***  Version                    :        3.0                 *** 
%***  Advisor                    :        Professor Shing     *** 
%***  File Name                  :        Final_MHP.m         *** 
%***                                                          *** 
%**************************************************************** 
%**************************************************************** 
 
function [] = Final_MHP() 
 
close all 
clear all 
clc 
 
fprintf(1,'\nSeismic Analysis of the Modular Hybrid Pier\n'); 
fprintf(1,' \n'); 
fprintf(1,'\n'); 
 
% Fenders 
for i=1:6 
fenderProp(i).mass = 3.2/(32.2*12); % UHMW PE pad and 1/2 of fenders  
fenderProp(i).length = 35.43; % in inches (900 mm) 
fenderProp(i).height = 49.2; % in inches (1250 mm)  
fenderProp(i).width = 15.79; % in inches (401 mm)  
fenderProp(i).youngs =  1; %ksi 
fenderProp(i).gap= 0;  % in inches (each side of mooring column) 
fenderProp(i).NumAxial = 8; % Number of Axial fender elements 
     
 
if ( i==1 || i == 2) 
    fenderProp(i).NumAxial = 4; % Number of Axial fender elements 
end 
     
     
%     if ( i==1 || i == 2) 
% fenderProp(i).mass = 2.076/(32.2*12); % UHMW PE pad and 1/2 of fenders  
% fenderProp(i).length = 35.4; % in inches (900 mm) 
% fenderProp(i).width = 12.7; % in inches (322 mm)  
% fenderProp(i).youngs =  20; %ksi 
% fenderProp(i).gap= 0.01;  % in inches (each side of mooring column) 
% fenderProp(i).NumAxial = 4; % Number of Axial fender elements 
%  
%     else  
% fenderProp(i).mass = 2.469/(32.2*12); % UHMW PE pad and 1/2 of fenders  
% fenderProp(i).length = 43.3; % in inches (900 mm)  
% fenderProp(i).width = 12.7; % in inches (322 mm)  
% fenderProp(i).youngs =  20; %ksi 
% fenderProp(i).gap= 0.01;  % in inches (each side of mooring column) 
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% fenderProp(i).NumAxial = 8; % Number of Axial fender elements 
     
%    end 
 
% Deformation (Axial, Lateral) 
fenderDef(i).uD = zeros(2,1);  % Displacement (in inches) 
fenderDef(i).uDdot = zeros(2,1);   % Velocity 
fenderDef(i).uDddot = zeros(2,1);  % Acceleration 
% Force  
fenderForce(i).RLat(1) = 0;  % Lateral Force Tracking 
fenderForce(i).RAxial = 0; % Axial Force Tracking 
end 
 
% Initial Constants  
% MDOF for MHP 
Sv = zeros(3,1);     % Displacement 
Svdot = zeros(3,1);  % Velocity 
Svddot = zeros(3,1);  % Acceleration 
 
% Timestep 
% see forcing function for EQ 
dT = .001;        % Timestep for fender 
 
M = Mass();    % Initialize Mass Matrix 
 
% Newmark Constants  
gamma = .5; 
 
% Initialize Damping (MHP not Fender (Fluid/Structure) 
 
% Damping Ratio chosen 
% z = 0.00; 
% w1 = 0.477; 
% w2 = 0.954; 
 
% Create Rayleigh Damping Matrix 
%a0 = (z*2*w1*w2)/(w1+w2); 
%a1 = z*2/(w1+w2); 
%C = a0*M + a1*K 
 
% Forcing Function (Time must be updated above) 
fid = fopen('Kobe975.txt','r');  
EQData = fscanf(fid,'%g'); 
fclose(fid); 
deltaT = .02;    % Timestep for Pier (from EQ in seconds) 
 
%      
    f = 1 * EQData * 32.2*12; % % of EQ in in/s^2 
    fdot = cumsum(f)*deltaT;  fdot = fdot - mean(fdot); % vel 
    fpos = cumsum(fdot)*deltaT;  fpos = fpos - mean(fpos); %disp 
     
    % Forcing Function 
    forcing = f * ones(1,3);  
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    F = M * forcing'; 
 
length = size(f); 
 
i = 1; 
 
while (i < length(1)) 
 
     
    % MHP displacement step 
    Sv(:,i+1) = Sv(:,i) + deltaT*Svdot(:,i) + (deltaT^2/2)*Svddot(:,i);  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Force from non-linear fender % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    % Total Disp vector 
 
    changeDisp = (Sv(:,i+1) - Sv(:,i)); % change in MHP displacement (i step) 
    steps = deltaT/dT; % Number of fender steps per MHP step 
    stepsize = changeDisp / steps; % step for fender (j) iterations 
         
    for p=1:3 
 
        if stepsize(p) ~=0 
            disp(p,:) = Sv(p,i):stepsize(p):Sv(p,i+1); 
        else 
           for w = 1:(steps+1) 
             
            disp(p,w) = (Sv(p,i+1)) ; % Creates vectors of if no change 
         
           end 
 
         end 
 
    end 
     
 
        %fender loops 
        for fnum = 1:6 
             
        [newDef,newForce] = 
Fender_1250_final(steps,disp,fenderProp(fnum),fenderDef(fnum).uD(:,i),fenderDef(fnum).uDdot(:,i),fe
nderDef(fnum).uDddot(:,i),fenderForce(fnum).RAxial,fenderForce(fnum).RLat(i),fnum);          
         
        fenderDef(fnum).uD(1,i+1) = newDef.vD(1); 
        fenderDef(fnum).uDdot(1,i+1) = newDef.vDdot(1);  
        fenderDef(fnum).uDddot(1,i+1) = newDef.vDddot(1); 
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        fenderDef(fnum).uD(2,i+1) = newDef.vD(2); 
        fenderDef(fnum).uDdot(2,i+1) = newDef.vDdot(2);  
        fenderDef(fnum).uDddot(2,i+1) = newDef.vDddot(2); 
         
        fenderForce(fnum).RAxial = newForce.RAxial;  
        fenderForce(fnum).RLat(i+1) = newForce.RLat; 
         
        end 
 
        % Axial Force from Fenders in Global 
        R(1, i+1) = (fenderForce(1).RAxial + fenderForce(2).RAxial );  % Force in Long. Direction 
        R(2, i+1) = (fenderForce(3).RAxial + fenderForce(4).RAxial ); % Force in Transverse 1 
        R(3, i+1) = (fenderForce(5).RAxial + fenderForce(6).RAxial ); % Force in Transverse 1 
                 
        % Lateral Force from Fenders in Global 
         
        RL(1, i+1) = (fenderForce(3).RLat(i+1) + fenderForce(4).RLat(i+1) + fenderForce(5).RLat(i+1) + 
fenderForce(6).RLat(i+1)); 
        RL(2, i+1) = (fenderForce(1).RLat(i+1) + fenderForce(2).RLat(i+1)); % Force in Transverse 1 
        RL(3, i+1) = 0; % Force in Transverse 2 
           
         
        % Vector of Forces for plotting 
              
        for w=1:6 
            Fplot(w,i+1) = fenderForce(w).RAxial; 
            LatPlot(w,i+1) = fenderForce(w).RLat(i+1); 
        end 
         
    %Calculate Acceleration Step 
     
    %vddot(:,i+1) = inv(M+deltaT*gamma*C)*(F(:,i+1)-R(:,i+1)-C*(vdot(:,i)+deltaT*(1-
gamma)*vddot(:,i))); 
    Svddot(:,i+1) = inv(M)*(F(:,i+1)-R(:,i+1)+ RL(:,i+1)); 
     
    %Calculate Velocity Step 
    Svdot(:,i+1) = Svdot(:,i) + deltaT*((1-gamma)*Svddot(:,i)+ gamma*Svddot(:,i+1));  
 
    time(i+1) = i*deltaT; 
    i = i+1; 
 
      
end 
 
 
figure('DefaultAxesFontSize',16); 
 
subplot(3,1,1) 
 
plot(time,f,'k', 'LineWidth',2); 
title('Ground Acceleration','fontsize',16) 
ylabel('Acceleration (in/sec^2)','fontsize ',16) 
xlabel('Time (sec)','fontsize',16) 
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axes('fontsize',16) 
subplot(3,1,2) 
plot(time,fdot,'k', 'LineWidth',2); 
title('Ground Velocity','fontsize',16) 
ylabel('Velocity (in/sec)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
 
subplot(3,1,3) 
plot(time,fpos,'k', 'LineWidth',2); 
hold on 
plot(time,Sv(1,:),'--r', 'LineWidth',2); 
plot(time,Sv(2,:),'-.b', 'LineWidth',2); 
title('Ground Displacement','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
legend('Ground','Longitudinal','Transverse') 
 
 
% to plot 0 axes lines 
xline1 = (-35:35:35); 
xline2(3) = (0); 
yline1 = (-750:750:750); 
yline2(3) = (0); 
 
figure('DefaultAxesFontSize',16); 
 
subplot(2,2,1) 
plot (Sv(1,:),Fplot(1,:), 'b', 'LineWidth',2) 
hold on 
 
plot (Sv(1,:),Fplot(2,:), '--r', 'LineWidth',2) 
plot (xline1, xline2,'k') 
plot (yline2,yline1,'k') 
axis([-35,35,-750,750]) 
set(gca,'XTick',-35:5:35) 
set(gca,'YTick',-750:250:750) 
title('Axial Fender Force vs. MHP Displacement (Longitudinal)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
 
subplot(2,2,3) 
plot (Sv(2,:),LatPlot(1,:),'--r', 'LineWidth',2) 
hold on 
grid on 
plot (Sv(2,:),LatPlot(2,:), 'b', 'LineWidth',2) 
 
title('Lateral Fender Force vs. MHP Displacement (Longitudinal)',' fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
 
subplot(2,2,2)        
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plot (Sv(2,:),Fplot(5,:)/2, 'b', 'LineWidth',2) 
hold on 
 
plot (Sv(2,:),Fplot(6,:)/2, '--r', 'LineWidth',2) 
 
plot (xline1, xline2,'k') 
plot (yline2,yline1,'k') 
axis([-35,35,-750,750]) 
set(gca,'XTick',-35:5:35) 
set(gca,'YTick',-750:250:750) 
title('Axial Fender Force vs. MHP Displacement (Transverse)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
subplot(2,2,4) 
plot (Sv(1,:),LatPlot(5,:), ' --r', 'LineWidth',2) 
hold on 
grid on 
plot (Sv(1,:),LatPlot(6,:), 'b', 'LineWidth',2) 
 
title('Lateral Fender Force vs. MHP Displacement (Transverse)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
 
figure('DefaultAxesFontSize',16); 
 
subplot(2,2,1) 
plot (time,fenderDef(1).uD(1,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(2).uD(1,:), ' --r', 'LineWidth',2) 
title('Axial Fender Displacement (Longitudinal) ','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
 
subplot(2,2,2) 
plot (time,fenderDef(3).uD(1,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(4).uD(1,:), ' --r', 'LineWidth',2) 
title('Axial Fender Displacement (Transverse)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
 
subplot(2,2,3) 
plot (time,fenderDef(1).uD(2,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(2).uD(2,:), ' --r', 'LineWidth',2) 
title('Lateral Fender Displacement (Longitudinal)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
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subplot(2,2,4) 
plot (time,fenderDef(3).uD(2,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(4).uD(2,:), '--r', 'LineWidth',2) 
title('Lateral Fender Displacement (Transverse)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
 
%title('1979 Imperial Valley - El Centro #5 (475 year)') 
%title('1979 Imperial Valley - El Centro #5 (975 year)') 
%title('1995 Kobe, Japan - KJMA (475 year)') 
%title('1995 Kobe, Japan - KJMA (975 year)') 
%title('1999 Koccaeli - Yarimca (475-year)') 
%title('1999 Koccaeli - Yarimca (975-year)') 
%title('1992 Landers - Lucerne (475 years)') 
%title('1992 Landers - Lucerne (975 years)') 
%title('1989 Loma Prieta - LGPC (475 year)') 
%title('1989 Loma Prieta - LGPC (975 year)') 
 
% figure         
% plot (v(3,:),Fplot(5,:), 'b', 'LineWidth',2) 
% hold on 
% plot (v(3,:),Fplot(6,:), 'b', 'LineWidth',2) 
% title('Force inparted to MHP from fenders') 
% xlabel('Disp') 
% ylabel('Force') 
 
 
fprintf(1,'\nSeismic Analysis Successful\n'); 
fprintf(1,'\nSee Output\n'); 
fprintf(1,' \n'); 
 
end 
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%**************************************************************** 
%***                                                          *** 
%***              Seismic Non-Linear MHP Analysis             *** 
%***                                                          *** 
%***  Programmer                 :        Adam Bogage         *** 
%***  Date                       :        Spring 2008         *** 
%***  Version                    :        3.0                 *** 
%***  Advisor                    :        Professor Shing     *** 
%***  File Name                  :        Final_MHP.m         *** 
%***                                                          *** 
%**************************************************************** 
%**************************************************************** 
 
function [] = Final_MHP() 
 
close all 
clear all 
clc 
 
fprintf(1,'\nSeismic Analysis of the Modular Hybrid Pier\n'); 
fprintf(1,' \n'); 
fprintf(1,'\n'); 
 
% Fenders 
for i=1:6 
     
% fenderProp(i).mass = 3.2/(32.2*12); % UHMW PE pad and 1/2 of fenders  
% fenderProp(i).length = 35.43; % in inches (900 mm) 
% fenderProp(i).height = 49.2; % in inches (1250 mm)  
% fenderProp(i).width = 15.79; % in inches (401 mm)  
% fenderProp(i).youngs =  1; %ksi 
% fenderProp(i).gap= 0;  % in inches (each side of mooring column) 
% fenderProp(i).NumAxial = 8; % Number of Axial fender elements 
%      
%  
% if ( i==1 || i == 2) 
%     fenderProp(i).NumAxial = 4; % Number of Axial fender elements 
% end 
     
     
    if ( i==1 || i == 2) 
fenderProp(i).mass = 2.076/(32.2*12); % UHMW PE pad and 1/2 of fenders  
fenderProp(i).length = 35.4; % in inches (900 mm) 
fenderProp(i).height = 39.4; % in inches (1000 mm)  
fenderProp(i).width = 12.7; % in inches (322 mm)  
fenderProp(i).youngs =  1; %ksi 
fenderProp(i).gap= 0.01;  % in inches (each side of mooring column) 
fenderProp(i).NumAxial = 4; % Number of Axial fender elements 
 
    else  
fenderProp(i).mass = 2.469/(32.2*12); % UHMW PE pad and 1/2 of fenders  
fenderProp(i).length = 43.3; % in inches (900 mm) 
fenderProp(i).height = 39.2; % in inches (1000 mm)  
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fenderProp(i).width = 12.7; % in inches (322 mm)  
fenderProp(i).youngs =  1; %ksi 
fenderProp(i).gap= 0.01;  % in inches (each side of mooring column) 
fenderProp(i).NumAxial = 8; % Number of Axial fender elements 
     
   end 
 
% Deformation (Axial, Lateral) 
fenderDef(i).uD = zeros(2,1);  % Displacement (in inches) 
fenderDef(i).uDdot = zeros(2,1);   % Velocity 
fenderDef(i).uDddot = zeros(2,1);  % Acceleration 
% Force  
fenderForce(i).RLat(1) = 0;  % Lateral Force Tracking 
fenderForce(i).RAxial = 0; % Axial Force Tracking 
end 
 
% Initial Constants  
% MDOF for MHP 
Sv = zeros(3,1);     % Displacement 
Svdot = zeros(3,1);  % Velocity 
Svddot = zeros(3,1);  % Acceleration 
 
% Timestep 
% see forcing function for EQ 
dT = .001;        % Timestep for fender 
 
M = Mass();    % Initialize Mass Matrix 
 
% Newmark Constants  
gamma = .5; 
 
% Initialize Damping (MHP not Fender (Fluid/Structure) 
 
% Damping Ratio chosen 
% z = 0.00; 
% w1 = 0.477; 
% w2 = 0.954; 
 
% Create Rayleigh Damping Matrix 
%a0 = (z*2*w1*w2)/(w1+w2); 
%a1 = z*2/(w1+w2); 
%C = a0*M + a1*K 
 
% Forcing Function (Time must be updated above) 
fid = fopen('Kobe975.txt','r');  
EQData = fscanf(fid,'%g'); 
fclose(fid); 
deltaT = .02;    % Timestep for Pier (from EQ in seconds) 
 
%      
    f = EQData * 32.2*12; % % of EQ in in/s^2 
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    fdot = cumsum(f)*deltaT;  fdot = fdot - mean(fdot); % vel 
    fpos = cumsum(fdot)*deltaT;  fpos = fpos - mean(fpos); %disp 
     
 
     
     
    % Forcing Function 
    forcing = f * ones(1,3);  
      
    F = M * forcing'; 
 
length = size(f); 
 
i = 1; 
 
while (i < length(1)) 
 
     
    % MHP displacement step 
    Sv(:,i+1) = Sv(:,i) + deltaT*Svdot(:,i) + (deltaT^2/2)*Svddot(:,i);  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Force from non-linear fender % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    % Total Disp vector 
 
    changeDisp = (Sv(:,i+1) - Sv(:,i)); % change in MHP displacement (i step) 
    steps = deltaT/dT; % Number of fender steps per MHP step 
    stepsize = changeDisp / steps; % step for fender (j) iterations 
         
    for p=1:3 
 
        if stepsize(p) ~=0 
            disp(p,:) = Sv(p,i):stepsize(p):Sv(p,i+1); 
        else 
           for w = 1:(steps+1) 
             
            disp(p,w) = (Sv(p,i+1)) ; % Creates vectors of if no change 
         
           end 
 
         end 
 
    end 
     
 
        %fender loops 
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        for fnum = 1:6 
             
        [newDef,newForce] = 
Fender_1000_final(steps,disp,fenderProp(fnum),fenderDef(fnum).uD(:,i),fenderDef(fnum).uDdot(:,i),fe
nderDef(fnum).uDddot(:,i),fenderForce(fnum).RAxial,fenderForce(fnum).RLat(i),fnum);          
         
        fenderDef(fnum).uD(1,i+1) = newDef.vD(1); 
        fenderDef(fnum).uDdot(1,i+1) = newDef.vDdot(1);  
        fenderDef(fnum).uDddot(1,i+1) = newDef.vDddot(1); 
        fenderDef(fnum).uD(2,i+1) = newDef.vD(2); 
        fenderDef(fnum).uDdot(2,i+1) = newDef.vDdot(2);  
        fenderDef(fnum).uDddot(2,i+1) = newDef.vDddot(2); 
         
        fenderForce(fnum).RAxial = newForce.RAxial;  
        fenderForce(fnum).RLat(i+1) = newForce.RLat; 
         
        end 
 
        % Axial Force from Fenders in Global 
        R(1, i+1) = (fenderForce(1).RAxial + fenderForce(2).RAxial );  % Force in Long. Direction 
        R(2, i+1) = (fenderForce(3).RAxial + fenderForce(4).RAxial ); % Force in Transverse 1 
        R(3, i+1) = (fenderForce(5).RAxial + fenderForce(6).RAxial ); % Force in Transverse 1 
                 
        % Lateral Force from Fenders in Global 
         
        RL(1, i+1) = (fenderForce(3).RLat(i+1) + fenderForce(4).RLat(i+1) + fenderForce(5).RLat(i+1) + 
fenderForce(6).RLat(i+1)); 
        RL(2, i+1) = (fenderForce(1).RLat(i+1) + fenderForce(2).RLat(i+1)); % Force in Transverse 1 
        RL(3, i+1) = 0; % Force in Transverse 2 
           
         
        % Vector of Forces for plotting 
              
        for w=1:6 
            Fplot(w,i+1) = fenderForce(w).RAxial; 
            LatPlot(w,i+1) = fenderForce(w).RLat(i+1); 
        end 
         
    %Calculate Acceleration Step 
     
    %vddot(:,i+1) = inv(M+deltaT*gamma*C)*(F(:,i+1)-R(:,i+1)-C*(vdot(:,i)+deltaT*(1-
gamma)*vddot(:,i))); 
    Svddot(:,i+1) = inv(M)*(F(:,i+1)-R(:,i+1)+ RL(:,i+1)); 
     
    %Calculate Velocity Step 
    Svdot(:,i+1) = Svdot(:,i) + deltaT*((1-gamma)*Svddot(:,i)+ gamma*Svddot(:,i+1));  
 
    time(i+1) = i*deltaT; 
    i = i+1; 
 
      
end 
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figure('DefaultAxesFontSize',16); 
 
subplot(3,1,1) 
 
plot(time,f,'k', 'LineWidth',2); 
title('Ground Acceleration','fontsize',16) 
ylabel('Acceleration (in/sec^2)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
axes('fontsize',16) 
subplot(3,1,2) 
plot(time,fdot,'k', 'LineWidth',2); 
title('Ground Velocity','fontsize',16) 
ylabel('Velocity (in/sec)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
 
subplot(3,1,3) 
plot(time,fpos,'k', 'LineWidth',2); 
hold on 
plot(time,Sv(1,:),'--r', 'LineWidth',2); 
plot(time,Sv(2,:),'-.b', 'LineWidth',2); 
title('Ground Displacement','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
legend('Ground','Longitudinal','Transverse') 
 
 
% to plot 0 axes lines 
xline1 = (-35:35:35); 
xline2(3) = (0); 
yline1 = (-750:750:750); 
yline2(3) = (0); 
 
figure('DefaultAxesFontSize',16); 
 
subplot(2,2,1) 
plot (Sv(1,:),Fplot(1,:), 'b', 'LineWidth',2) 
hold on 
 
plot (Sv(1,:),Fplot(2,:), ' --r', 'LineWidth',2) 
plot (xline1, xline2,'k') 
plot (yline2,yline1,'k') 
axis([-35,35,-750,750]) 
set(gca,'XTick',-35:5:35) 
set(gca,'YTick',-750:250:750) 
title('Axial Fender Force vs. MHP Displacement (Longitudinal)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
 
subplot(2,2,3) 
plot (Sv(2,:),LatPlot(1,:),'--r', 'LineWidth',2) 
hold on 



155 

 

grid on 
plot (Sv(2,:),LatPlot(2,:), 'b', 'LineWidth',2) 
 
title('Lateral Fender Force vs. MHP Displacement (Longitudinal)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
 
subplot(2,2,2)        
plot (Sv(2,:),Fplot(5,:)/2, 'b', 'LineWidth',2) 
hold on 
 
plot (Sv(2,:),Fplot(6,:)/2, '--r', 'LineWidth',2) 
 
plot (xline1, xline2,'k') 
plot (yline2,yline1,'k') 
axis([-35,35,-750,750]) 
set(gca,'XTick',-35:5:35) 
set(gca,'YTick',-750:250:750) 
title('Axial Fender Force vs. MHP Displacement (Transverse)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
subplot(2,2,4) 
plot (Sv(1,:),LatPlot(5,:), ' --r', 'LineWidth',2) 
hold on 
grid on 
plot (Sv(1,:),LatPlot(6,:), 'b', 'LineWidth',2) 
 
title('Lateral Fender Force vs. MHP Displacement (Transverse)','fontsize',16) 
xlabel('Displacement (in)','fontsize',16) 
ylabel('Force (kips)','fontsize',16) 
 
 
figure('DefaultAxesFontSize',16); 
 
subplot(2,2,1) 
plot (time,fenderDef(1).uD(1,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(2).uD(1,:), ' --r', 'LineWidth',2) 
title('Axial Fender Displacement (Longitudinal)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
 
subplot(2,2,2) 
plot (time,fenderDef(3).uD(1,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(4).uD(1,:), ' --r', 'LineWidth',2) 
title('Axial Fender Displacement (Transverse)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
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subplot(2,2,3) 
plot (time,fenderDef(1).uD(2,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(2).uD(2,:), ' --r', 'LineWidth',2) 
title('Lateral Fender Displacement (Longitudinal)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
 
subplot(2,2,4) 
plot (time,fenderDef(3).uD(2,:), 'b', 'LineWidth',2) 
grid on 
hold on   
plot (time,fenderDef(4).uD(2,:), ' --r', 'LineWidth',2) 
title('Lateral Fender Displacement (Transverse)','fontsize',16) 
xlabel('Time (sec)','fontsize',16) 
ylabel('Displacement (in)','fontsize',16) 
 
%title('1979 Imperial Valley - El Centro #5 (475 year)') 
%title('1979 Imperial Valley - El Centro #5 (975 year)') 
%title('1995 Kobe, Japan - KJMA (475 year)') 
%title('1995 Kobe, Japan - KJMA (975 year)') 
%title('1999 Koccaeli - Yarimca (475-year)') 
%title('1999 Koccaeli - Yarimca (975-year)') 
%title('1992 Landers - Lucerne (475 years)') 
%title('1992 Landers - Lucerne (975 years)') 
%title('1989 Loma Prieta - LGPC (475 year)') 
%title('1989 Loma Prieta - LGPC (975 year)') 
 
% figure         
% plot (v(3,:),Fplot(5,:), 'b', 'LineWidth',2) 
% hold on 
% plot (v(3,:),Fplot(6,:), 'b', 'LineWidth',2) 
% title('Force inparted to MHP from fenders') 
% xlabel('Disp') 
% ylabel('Force') 
 
fprintf(1,'\nSeismic Analysis Successful\n'); 
fprintf(1,'\nSee Output\n'); 
fprintf(1,' \n'); 
 
end 



157 

 

%**************************************************************** 
%***                                                          *** 
%***               Fender Behavior - MHP Analysis             *** 
%***                                                          *** 
%***  Programmer                 :        Adam Bogage         *** 
%***  Date                       :        Spring 2008         *** 
%***  Version                    :        3.2                 *** 
%***  Advisor                    :        Professor Shing     *** 
%***  File Name                  :        Fender_final.m      *** 
%***                                                          *** 
%**************************************************************** 
%**************************************************************** 
 
 
function [newDef,newForce] = 
Fender_final(steps,disp,fenderProp,uD,uDdot,uDddot,RAxial,RLat,fnum) 
 
 
%%%%%%%%%%%%%%%%%%%%% 
% Initial Constants % 
%%%%%%%%%%%%%%%%%%%%% 
 
% Timestep (from EQ in future) 
dT = 0.001;  % in seconds 
 
% Effective Mass - UHMW PE pad and 1/2 of fenders  
%  Mass of Fender element 
M = fenderProp.mass/4; 
 
% Stiffness for Gap Simulation 
% Assume initial stiffness of fender ~ 8 kips/in 
Kbar = 160;  % kips/in 
 
% Damping of fender 
% damping non-linear (SEE DAMPING.M) 
beta = -0.55; 
alpha = 1.21; 
length = fenderProp.length; % in inches 
height = fenderProp.height; %in inches 
width = fenderProp.width; % in inches  
area = width * length; 
delta = 0.001; 
 
% Newmark Constants  
gamma = .5; 
% beta =  
 
j=1; 
 
% Axial Last-step write 
vD(j) = uD(1); 
vDdot(j) = uDdot(1); 
vDddot(j) = uDddot(1); 
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% Lateral Last-step write 
vLD(j) = uD(2); 
vLDdot(j) = uDdot(2); 
vLDddot(j) = uDddot(2); 
% Force Last Step 
fenderForce.RAxial = RAxial;  
fenderForce.RLat(j) = RLat; 
 
%%%%%%%%%%%%%%%%%%%%% 
%  Axial Direction  % 
%%%%%%%%%%%%%%%%%%%%% 
 
while (j <= steps) 
    % Compute v(j+1)     
    if  ( fnum ==1 || fnum ==2) % Fenders in "positive" direction 
        vA(j) = disp(1,j);  
        vA(j+1) = disp(1,j+1); 
    elseif  ( fnum ==3 || fnum ==4) % Fenders in "positive" direction 
        vA(j) = disp(2,j);  
        vA(j+1) = disp(2,j+1); 
    elseif ( fnum ==5 || fnum ==6) % Fenders in "negative" direction 
        vA(j) = disp(3,j);  
        vA(j+1) = disp(3,j+1); 
    end 
 
    % Compute vD(i+1) 
        vD(j+1) = vD(j) + dT*vDdot(j) + dT^2/2*vDddot(j);  
         
    % Compute rD (% of 1000 mm fenders) 
        rD(j+1) = length/39.4 * Force(vD(j+1));  
         
   % Compute rD (% of 1250 x 900 mm fenders) 
        %rD(j+1) = length / 35.433 * Force1250(vD(j+1));  
         
    % Compute r 
        
 if  ( fnum == 1 || fnum == 3 || fnum ==5) % Fenders in "positive" direction 
        if (vA(j+1)+ fenderProp.gap) > vD(j+1) 
              r(j+1) = 0; % Models the gap 
        else 
              r(j+1) = Kbar * (vA(j+1)+ fenderProp.gap - vD(j+1)); 
        end 
    elseif ( fnum == 2 || fnum == 4 || fnum == 6) % Fenders in "negative" direction 
        if (vA(j+1)- fenderProp.gap) < vD(j+1) 
              r(j+1) = 0; % Models the gap 
        else 
              r(j+1) = Kbar * (vA(j+1)- fenderProp.gap - vD(j+1)); 
        end 
 end 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Iteration to converge on velocity 
        vDdot(j+1) = vDdot(j); % velicity from last step 
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        check = 999;                % initialize residual 
         
 while (check >= 0.00001)  %(0.001*uDdot(i))) 
 
    % Compute Phi (Known Values) 
         Phi = - rD(j+1) + r(j+1) + M*(2/dT*vDdot(j) + vDddot(j));  
    
    % Compute Damping Force 
         dampA(j+1) = DampingNew(vDdot(j+1),rD(j+1),alpha,height);  
          
    % Compute Residual 
         R(j+1) = 2*M/dT*vDdot(j+1) + dampA(j+1) - Phi; 
          
    % Compute Ct (Tangent Damping Coefficient) 
         Ct(j+1) = (1+beta)*(alpha*abs(rD(j+1))/height^(1+beta)*(abs(vDdot(j+1))+delta)^beta);  
                   
    % Compute change in velocity 
        deltaVel = -R(j+1) / (2*M/dT + Ct(j+1));  
         
    % Modify velocity for next loop 
        vDdot(j+1) = vDdot(j+1) + deltaVel; 
        %fenderDef.uDdot(1,k+1) = vDdot(j+1);  
 
    % To check for convergence 
        check = abs(R); 
         
 end 
 
    % Compute new acceleration 
        vDddot(j+1) = 2/dT * (vDdot(j+1) - vDdot(j)) - vDddot(j);  
        %fenderDef.uDddot(1,k+1) = vDddot(j+1);         
   
%%%%%%%%%%%%%%%%%%%%%%% 
%  Lateral Direction  % 
%%%%%%%%%%%%%%%%%%%%%%% 
 
    % Compute v(j+1) 
        if (fnum == 1 || fnum == 2) 
             
        vL(j) = disp(2,j); 
        vL(j+1) = disp(2,j+1);  
         
        elseif (fnum == 3 || fnum == 4  || fnum == 5 || fnum == 6) 
     
        vL(j) = disp(1,j); 
        vL(j+1) = disp(1,j+1);  
     
        end 
         
    % Compute vD(i+1) 
        vLD(j+1) = vLD(j) + dT*vLDdot(j) + dT^2/2*vLDddot(j);  
        %fenderDef.uD(2,k+1) = vLD(j+1); 
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    % Compute rD - spring force from lateral fender 
     
    % Lateral Stiffness     
             
        % Bending Stiffness (Assume Fixed / Fixed) 
        % Young's Modulus 
        E = fenderProp.youngs; 
        %Moment of Inertia 
        I = width *length^3 / 12; 
              
        Kbend = 12*E*I/height^3; 
 
        % Shear Stiffness   
        % Shape Factor 
        shape = (5/6); 
        %  Shear Modulus (poisson's = 0.5) 
        G = E/3; % in ksi 
         
        Kshear = (shape * G * area ) / height; 
     
        KLat = (Kshear*Kbend)/(Kshear + Kbend); % Lateral Stiffness 
         
        KbarLat = 20 * KLat;     % Lateral Penalty Stiffness 
         
        rLD(j+1) = KLat * vLD(j+1); 
            
    % Compute r - contact force with mooring shaft  
    mu = .15; % coefficient of friction 
    
    if  r(j+1) == 0 % Not in Contact 
          
        fenderForce.RLat(j+1) =  0; 
         
    else             % In Contact 
        % Incremental Force from change in displacement 
        rL(j+1) = KbarLat * (( vL(j+1) - vLD(j+1) ) - ( vL(j) - vLD(j) ));        
         % Total Force (old force + Incremental) 
        fenderForce.RLat(j+1) = fenderForce.RLat(j) + rL(j+1); 
         % Check to see if sliding (friction ~ 15% of axial) 
          
         if abs(fenderForce.RLat(j+1)) > mu * abs(r(j+1)) 
             fenderForce.RLat(j+1) = mu * abs(r(j+1)) * sign(fenderForce.RLat(j+1));  
          
         end 
    end 
        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Iteration to converge on velocity 
        vLDdot(j+1) = vLDdot(j); % velicity from last step 
        check = 999;                % initialize residual 
         
 while (check >= 0.00001)  %(0.001*uDdot(i))) 
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    % Compute Phi (Known Values) 
         Phi = - rLD(j+1) + fenderForce.RLat(j+1) + M*(2/dT*vLDdot(j) + vLDddot(j));  
    
    % Compute Damping Force 
         dampA(j+1) = DampingNew(vLDdot(j+1),rLD(j+1),alpha,height);  
                    
    % Compute Residual 
         R(j+1) = 2*M/dT*vLDdot(j+1) + dampA(j+1) - Phi; 
      
    % Compute Ct (Tangent Damping Coefficient) 
         Ct(j+1) = (1+beta)*(alpha*abs(rLD(j+1))/height^0.45)*(abs(vLDdot(j+1))+delta)^beta; 
                   
    % Compute change in velocity 
        deltaVel = -R(j+1) / (2*M/dT + Ct(j+1));  
         
    % Modify velocity for next loop 
        vLDdot(j+1) = vLDdot(j+1) + deltaVel;  
        %fenderDef.uDdot(2,k+1) = vLDdot(j+1);  
         
    % To check for convergence 
        check = abs(R); 
         
 end 
 
    % Compute new acceleration 
        vLDddot(j+1) = 2/dT * (vLDdot(j+1) - vLDdot(j)) - vLDddot(j);  
        %fenderDef.uDddot(2,k+1) = vLDddot(j+1);    
     
      % Iteration Counter     
        j = j+1; 
end 
 
newDef.vD(1) = vD(j);  
newDef.vDdot(1) = vDdot(j);  
newDef.vDddot(1) = vDddot(j);  
newDef.vD(2) = vLD(j);  
newDef.vDdot(2) = vLDdot(j); 
newDef.vDddot(2) = vLDddot(j);  
 
% Four elements at each DOF 
newForce.RAxial = fenderProp.NumAxial * r(j);  
 
% Two elements at each DOF (i steps) 
newForce.RLat = fenderProp.NumAxial/2 * fenderForce.RLat(j);  
 
end 
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%**************************************************************** 
%***                                                          *** 
%***               Fender Behavior - MHP Analysis             *** 
%***                                                          *** 
%***  Programmer                 :        Adam Bogage         *** 
%***  Date                       :        Spring 2008         *** 
%***  Version                    :        3.2                 *** 
%***  Advisor                    :        Professor Shing     *** 
%***  File Name                  :        Fender_final.m      *** 
%***                                                          *** 
%**************************************************************** 
%**************************************************************** 
 
 
function [newDef,newForce] = 
Fender_1250_final(steps,disp,fenderProp,uD,uDdot,uDddot,RAxial,RLat,fnum) 
 
 
%%%%%%%%%%%%%%%%%%%%% 
% Initial Constants % 
%%%%%%%%%%%%%%%%%%%%% 
 
% Timestep (from EQ in future) 
dT = 0.001;  % in seconds 
 
% Effective Mass - UHMW PE pad and 1/2 of fenders  
%  Mass of Fender element 
M = fenderProp.mass/4; 
 
% Stiffness for Gap Simulation 
% Assume initial stiffness of fender ~ 8 kips/in 
Kbar = 160;  % kips/in 
 
% Damping of fender 
% damping non-linear (SEE DAMPING.M) 
beta = -0.55; 
alpha = 1.21; 
length = fenderProp.length; % in inches 
height = fenderProp.height; %in inches 
width = fenderProp.width; % in inches  
area = width * length; 
delta = 0.001; 
 
% Newmark Constants  
gamma = .5; 
% beta =  
 
j=1; 
 
% Axial Last-step write 
vD(j) = uD(1); 
vDdot(j) = uDdot(1); 
vDddot(j) = uDddot(1); 
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% Lateral Last-step write 
vLD(j) = uD(2); 
vLDdot(j) = uDdot(2); 
vLDddot(j) = uDddot(2); 
% Force Last Step 
fenderForce.RAxial = RAxial;  
fenderForce.RLat(j) = RLat; 
 
%%%%%%%%%%%%%%%%%%%%% 
%  Axial Direction  % 
%%%%%%%%%%%%%%%%%%%%% 
 
 
while (j <= steps) 
    % Compute v(j+1)     
    if  ( fnum ==1 || fnum ==2) % Fenders in "positive" direction 
        vA(j) = disp(1,j);  
        vA(j+1) = disp(1,j+1); 
    elseif  ( fnum ==3 || fnum ==4) % Fenders in "positive" direction 
        vA(j) = disp(2,j);  
        vA(j+1) = disp(2,j+1); 
    elseif ( fnum ==5 || fnum ==6) % Fenders in "negative" direction 
        vA(j) = disp(3,j);  
        vA(j+1) = disp(3,j+1); 
    end 
 
    % Compute vD(i+1) 
        vD(j+1) = vD(j) + dT*vDdot(j) + dT^2/2*vDddot(j); 
         
    % Compute rD (% of 1000 mm fenders) 
        %rD(j+1) = length/39.4 * Force(vD(j+1)); 
         
   % Compute rD (% of 1250 x 900 mm fenders) 
        rD(j+1) = length / 35.433 * Force1250(vD(j+1));  
         
    % Compute r 
 
if  ( fnum == 1 || fnum == 3 || fnum ==5) % Fenders in "positive" direction 
        if (vA(j+1)+ fenderProp.gap) > vD(j+1) 
              r(j+1) = 0; % Models the gap 
        else 
              r(j+1) = Kbar * (vA(j+1)+ fenderProp.gap - vD(j+1)); 
                         
        end 
    elseif ( fnum == 2 || fnum == 4 || fnum == 6) % Fenders in "negative" direction 
        if (vA(j+1)- fenderProp.gap) < vD(j+1) 
              r(j+1) = 0; % Models the gap 
        else 
              r(j+1) = Kbar * (vA(j+1)- fenderProp.gap - vD(j+1)); 
        end 
 end 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Iteration to converge on velocity 
        vDdot(j+1) = vDdot(j); % velicity from last step 
        check = 999;                % initialize residual 
         
 while (check >= 0.00001)  %(0.001*uDdot(i))) 
      
    % Compute Phi (Known Values) 
         Phi = - rD(j+1) + r(j+1) + M*(2/dT*vDdot(j) + vDddot(j));  
    
    % Compute Damping Force 
         dampA(j+1) = DampingNew(vDdot(j+1),rD(j+1),alpha,height);  
          
    % Compute Residual 
         R(j+1) = 2*M/dT*vDdot(j+1) + dampA(j+1) - Phi; 
      
    % Compute Ct (Tangent Damping Coefficient) 
         Ct(j+1) = (1+beta)*(alpha*abs(rD(j+1))/height^(1+beta)*(abs(vDdot(j+1))+delta)^beta);  
                   
    % Compute change in velocity 
        deltaVel = -R(j+1) / (2*M/dT + Ct(j+1));  
         
    % Modify velocity for next loop 
        vDdot(j+1) = vDdot(j+1) + deltaVel; 
        %fenderDef.uDdot(1,k+1) = vDdot(j+1);  
 
    % To check for convergence 
        check = abs(R); 
end 
 
    % Compute new acceleration 
        vDddot(j+1) = 2/dT * (vDdot(j+1) - vDdot(j)) - vDddot(j);  
        %fenderDef.uDddot(1,k+1) = vDddot(j+1);         
   
%%%%%%%%%%%%%%%%%%%%%%% 
%  Lateral Direction  % 
%%%%%%%%%%%%%%%%%%%%%%% 
 
    % Compute v(j+1) 
        if (fnum == 1 || fnum == 2) 
             
        vL(j) = disp(2,j); 
        vL(j+1) = disp(2,j+1);  
         
        elseif (fnum == 3 || fnum == 4  || fnum == 5 || fnum == 6) 
     
        vL(j) = disp(1,j); 
        vL(j+1) = disp(1,j+1);  
     
        end 
         
    % Compute vLD(i+1) 
        vLD(j+1) = vLD(j) + dT*vLDdot(j) + dT^2/2*vLDddot(j);  
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    % Compute rD - spring force from lateral fender 
     
    % Lateral Stiffness     
             
        % Bending Stiffness (Assume Fixed / Fixed) 
        % Young's Modulus 
        E = fenderProp.youngs; 
        %Moment of Inertia 
        I = width *length^3 / 12; 
              
        Kbend = 12*E*I/height^3; 
 
        % Shear Stiffness   
        % Shape Factor 
        shape = (5/6); 
        %  Shear Modulus (poisson's = 0.5) 
        G = E/3; % in ksi 
         
        Kshear = (shape * G * area ) / height; 
     
        KLat = (Kshear*Kbend)/(Kshear + Kbend); % Lateral Stiffness 
         
        KbarLat = .10 * KLat;     % Lateral Penalty Stiffness 
         
        rLD(j+1) = KLat * vLD(j+1); 
            
        
    % Compute r - contact force with mooring shaft  
    mu = .15; % coefficient of friction 
    
    if  r(j+1) == 0 % Not in Contact 
          
        fenderForce.RLat(j+1) =  0; 
         
    else             % In Contact 
        % Incremental Force from change in displacement 
        rL(j+1) = KbarLat * (( vL(j+1) - vLD(j+1) ) - ( vL(j) - vLD(j) ));        
         % Total Force (old force + Incremental) 
        fenderForce.RLat(j+1) = fenderForce.RLat(j) + rL(j+1); 
         % Check to see if sliding (friction ~ 15% of axial) 
          
         if abs(fenderForce.RLat(j+1)) > mu * abs(r(j+1)) 
             fenderForce.RLat(j+1) = mu * abs(r(j+1)) * sign(fenderForce.RLat(j+1));  
          
         end 
    end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Iteration to converge on velocity 
        vLDdot(j+1) = vLDdot(j); % velicity from last step 
        check = 999;                % initialize residual 
         
 while (check >= 0.00001)  %(0.001*uDdot(i))) 
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    % Compute Phi (Known Values) 
         Phi = - rLD(j+1) + fenderForce.RLat(j+1) + M*(2/dT*vLDdot(j) + vLDddot(j));  
    
    % Compute Damping Force 
         dampA(j+1) = DampingNew(vLDdot(j+1),rLD(j+1),alpha,height);  
                    
    % Compute Residual 
         R(j+1) = 2*M/dT*vLDdot(j+1) + dampA(j+1) - Phi; 
      
    % Compute Ct (Tangent Damping Coefficient) 
         Ct(j+1) = (1+beta)*(alpha*abs(rLD(j+1))/height^0.45)*(abs(vLDdot(j+1))+delta)^beta; 
                   
    % Compute change in velocity 
        deltaVel = -R(j+1) / (2*M/dT + Ct(j+1));  
         
    % Modify velocity for next loop 
        vLDdot(j+1) = vLDdot(j+1) + deltaVel;  
        %fenderDef.uDdot(2,k+1) = vLDdot(j+1);  
         
    % To check for convergence 
        check = abs(R); 
end 
 
    % Comp ute new acceleration 
        vLDddot(j+1) = 2/dT * (vLDdot(j+1) - vLDdot(j)) - vLDddot(j);  
        %fenderDef.uDddot(2,k+1) = vLDddot(j+1);    
     
      % Iteration Counter     
        j = j+1; 
end 
 
newDef.vD(1) = vD(j);  
newDef.vDdot(1) = vDdot(j);  
newDef.vDddot(1) = vDddot(j); 
newDef.vD(2) = vLD(j);  
newDef.vDdot(2) = vLDdot(j);  
newDef.vDddot(2) = vLDddot(j);  
 
% Four elements at each DOF 
newForce.RAxial = fenderProp.NumAxial * r(j);  
 
% Two elements at each DOF (i steps) 
newForce.RLat = fenderProp.NumAxial/2 * fenderForce.RLat(j); 
 
end 
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%**************************************************************** 
%***                                                          *** 
%***               Fender Behavior - MHP Analysis             *** 
%***                                                          *** 
%***  Programmer                 :        Adam Bogage         *** 
%***  Date                       :        Spring 2008         *** 
%***  Version                    :        3.2                 *** 
%***  Advisor                    :        Professor Shing     *** 
%***  File Name                  :        Fender_final.m      *** 
%***                                                          *** 
%**************************************************************** 
%**************************************************************** 
 
 
function [newDef,newForce] = 
Fender_final(steps,disp,fenderProp,uD,uDdot,uDddot,RAxial,RLat,fnum) 
 
 
%%%%%%%%%%%%%%%%%%%%% 
% Initial Constants % 
%%%%%%%%%%%%%%%%%%%%% 
 
% Timestep (from EQ in future) 
dT = 0.001;  % in seconds 
 
% Effective Mass - UHMW PE pad and 1/2 of fenders  
%  Mass of Fender element 
M = fenderProp.mass/4; 
 
% Stiffness for Gap Simulation 
% Assume initial stiffness of fender ~ 8 kips/in 
Kbar = 160;  % kips/in 
 
% Damping of fender 
% damping non-linear (SEE DAMPING.M) 
beta = -0.55; 
alpha = 1.21; 
length = fenderProp.length; % in inches 
height = fenderProp.height; %in inches 
width = fenderProp.width; % in inches  
area = width * length; 
delta = 0.001; 
 
% Newmark Constants  
gamma = .5; 
% beta =  
 
j=1; 
 
% Axial Last-step write 
vD(j) = uD(1); 
vDdot(j) = uDdot(1); 
vDddot(j) = uDddot(1); 
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% Lateral Last-step write 
vLD(j) = uD(2); 
vLDdot(j) = uDdot(2); 
vLDddot(j) = uDddot(2); 
% Force Last Step 
fenderForce.RAxial = RAxial;  
fenderForce.RLat(j) = RLat; 
 
%%%%%%%%%%%%%%%%%%%%% 
%  Axial Direction  % 
%%%%%%%%%%%%%%%%%%%%% 
 
while (j <= steps) 
    % Compute v(j+1)     
    if  ( fnum ==1 || fnum ==2) % Fenders in "positive" direction 
        vA(j) = disp(1,j);  
        vA(j+1) = disp(1,j+1); 
    elseif  ( fnum ==3 || fnum ==4) % Fenders in "positive" direction 
        vA(j) = disp(2,j);  
        vA(j+1) = disp(2,j+1); 
    elseif ( fnum ==5 || fnum ==6) % Fenders in "negative" direction 
        vA(j) = disp(3,j);  
        vA(j+1) = disp(3,j+1); 
    end 
 
    % Compute vD(i+1) 
        vD(j+1) = vD(j) + dT*vDdot(j) + dT^2/2*vDddot(j);  
         
    % Compute rD (% of 1000 mm fenders) 
        rD(j+1) = length / 39.4 * Force(vD(j+1));  
         
   % Compute rD (% of 1250 x 900 mm fenders) 
        %rD(j+1) = length / 35.433 * Force1250(vD(j+1));  
         
    % Compute r 
 
if  ( fnum == 1 || fnum == 3 || fnum ==5) % Fenders in "positive" direction 
        if (vA(j+1)+ fenderProp.gap) > vD(j+1) 
              r(j+1) = 0; % Models the gap 
        else 
              r(j+1) = Kbar * (vA(j+1)+ fenderProp.gap - vD(j+1)); 
                         
        end 
    elseif ( fnum == 2 || fnum == 4 || fnum == 6) % Fenders in "negative" direction 
        if (vA(j+1)- fenderProp.gap) < vD(j+1) 
              r(j+1) = 0; % Models the gap 
        else 
              r(j+1) = Kbar * (vA(j+1)- fenderProp.gap - vD(j+1)); 
        end 
 end 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Iteration to converge on velocity 
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        vDdot(j+1) = vDdot(j); % velicity from last step 
        check = 999;                % initialize residual 
         
 while (check >= 0.00001)  %(0.001*uDdot(i))) 
      
    % Compute Phi (Known Values) 
         Phi = - rD(j+1) + r(j+1) + M*(2/dT*vDdot(j) + vDddot(j));  
    
    % Compute Damping Force 
         dampA(j+1) = DampingNew(vDdot(j+1),rD(j+1),alpha,height);  
          
    % Compute Residual 
         R(j+1) = 2*M/dT*vDdot(j+1) + dampA(j+1) - Phi; 
          
      
    % Compute Ct (Tangent Damping Coefficient) 
         Ct(j+1) = (1+beta)*(alpha*abs(rD(j+1))/height^(1+beta)*(abs(vDdot(j+1))+delta)^beta); 
                   
    % Compute change in velocity 
        deltaVel = -R(j+1) / (2*M/dT + Ct(j+1));  
         
    % Modify velocity for next loop 
        vDdot(j+1) = vDdot(j+1) + deltaVel; 
        %fenderDef.uDdot(1,k+1) = vDdot(j+1); 
 
    % To check for convergence 
        check = abs(R); 
         
 end 
 
    % Compute new acceleration 
        vDddot(j+1) = 2/dT * (vDdot(j+1) - vDdot(j)) - vDddot(j);  
        %fenderDef.uDddot(1,k+1) = vDddot(j+1);         
   
%%%%%%%%%%%%%%%%%%%%%%% 
%  Lateral Direction  % 
%%%%%%%%%%%%%%%%%%%%%%% 
 
    % Compute v(j+1) 
        if (fnum == 1 || fnum == 2) 
             
        vL(j) = disp(2,j); 
        vL(j+1) = disp(2,j+1);  
         
        elseif (fnum == 3 || fnum == 4  || fnum == 5 || fnum == 6) 
     
        vL(j) = disp(1,j); 
        vL(j+1) = disp(1,j+1);  
     
        end 
         
    % Compute vD(i+1) 
        vLD(j+1) = vLD(j) + dT*vLDdot(j) + dT^2/2*vLDddot(j);  



170 

 

        %fenderDef.uD(2,k+1) = vLD(j+1); 
         
    % Compute rD - spring force from lateral fender 
     
    % Lateral Stiffness     
             
        % Bending Stiffness (Assume Fixed / Fixed) 
        % Young's Modulus 
        E = fenderProp.youngs; 
        %Moment of Inertia 
        I = width *length^3 / 12; 
              
        Kbend = 12*E*I/height^3; 
 
        % Shear Stiffness   
        % Shape Factor 
        shape = (5/6); 
        %  Shear Modulus (poisson's = 0.5) 
        G = E/3; % in ksi 
         
        Kshear = (shape * G * area ) / height; 
     
        KLat = (Kshear*Kbend)/(Kshear + Kbend); % Lateral Stiffness 
         
        KbarLat = 20 * KLat;     % Lateral Penalty Stiffness 
         
        rLD(j+1) = KLat * vLD(j+1); 
        
    % Compute r - contact force with mooring shaft  
    mu = .15; % coefficient of friction 
    
    if  r(j+1) == 0 % Not in Contact 
          
        fenderForce.RLat(j+1) =  0; 
         
    else             % In Contact 
        % Incremental Force from change in displacement 
        rL(j+1) = KbarLat * (( vL(j+1) - vLD(j+1) ) - ( vL(j) - vLD(j) ));        
         % Total Force (old force + Incremental) 
        fenderForce.RLat(j+1) = fenderForce.RLat(j) + rL(j+1); 
         % Check to see if sliding (friction ~ 15% of axial) 
          
         if abs(fenderForce.RLat(j+1)) > mu * abs(r(j+1)) 
             fenderForce.RLat(j+1) = mu * abs(r(j+1)) * sign(fenderForce.RLat(j+1));  
          
         end 
    end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Iteration to converge on velocity 
        vLDdot(j+1) = vLDdot(j); % velicity from last step 
        check = 999;                % initialize residual 
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 while (check >= 0.00001)  %(0.001*uDdot(i))) 
 
    % Compute Phi (Known Values) 
         Phi = - rLD(j+1) + fenderForce.RLat(j+1) + M*(2/dT*vLDdot(j) + vLDddot(j));  
    
    % Compute Damping Force 
         dampA(j+1) = DampingNew(vLDdot(j+1),rLD(j+1),alpha,height);  
                    
    % Compute Residual 
         R(j+1) = 2*M/dT*vLDdot(j+1) + dampA(j+1) - Phi; 
      
    % Compute Ct (Tangent Damping Coefficient) 
         Ct(j+1) = (1+beta)*(alpha*abs(rLD(j+1))/height^0.45)*(abs(vLDdot(j+1))+delta)^beta; 
                   
    % Compute change in velocity 
        deltaVel = -R(j+1) / (2*M/dT + Ct(j+1));  
         
    % Modify velocity for next loop 
        vLDdot(j+1) = vLDdot(j+1) + deltaVel;  
        %fenderDef.uDdot(2,k+1) = vLDdot(j+1); 
         
    % To check for convergence 
        check = abs(R); 
end 
 
    % Compute new acceleration 
        vLDddot(j+1) = 2/dT * (vLDdot(j+1) - vLDdot(j)) - vLDddot(j);  
        %fenderDef.uDddot(2,k+1) = vLDddot(j+1);    
     
      % Iteration Counter     
        j = j+1; 
end 
 
newDef.vD(1) = vD(j);  
newDef.vDdot(1) = vDdot(j);  
newDef.vDddot(1) = vDddot(j);  
newDef.vD(2) = vLD(j);  
newDef.vDdot(2) = vLDdot(j);  
newDef.vDddot(2) = vLDddot(j);  
 
% Four elements at each DOF 
newForce.RAxial = fenderProp.NumAxial * r(j);  
 
% Two elements at each DOF (i steps) 
newForce.RLat = fenderProp.NumAxial/2 * fenderForce.RLat(j);  
 
end 
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%**************************************************************** 
%***                                                          *** 
%***            Axial Fender Curve - MHP Analysis             *** 
%***                                                          *** 
%***  Programmer                 :        Adam Bogage         *** 
%***  Date                       :        Spring 2008         *** 
%***  Version                    :        1.0                 *** 
%***  Advisor                    :        Professor Shing     *** 
%***  File Name                  :        Force.m             *** 
%***                                                          *** 
%**************************************************************** 
%**************************************************************** 
 
 
 
function[R] = Force1250 (x)  
    % Returns force based on displacement 
     
    
    y = abs(x);  
     
    % MV1250 x 900 A Element (0.5 mm/sec) 
        R = 0.0011*y^4 - 0.0408*y^3 + 0.0624*y^2 + 10.836*y; 
    
        if (x < 0) 
        R = -R; % to recover negative sign 
        end 
         
end 
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%**************************************************************** 
%***                                                          *** 
%***            Axial Fender Curve - MHP Analysis             *** 
%***                                                          *** 
%***  Programmer                 :        Adam Bogage         *** 
%***  Date                       :        Spring 2008         *** 
%***  Version                    :        1.0                 *** 
%***  Advisor                    :        Professor Shing     *** 
%***  File Name                  :        Force.m             *** 
%***                                                          *** 
%**************************************************************** 
%**************************************************************** 
 
 
 
function[R] = Force1000 (x)  
    % Returns force based on displacement 
     
    
    y = abs(x);  
     
    % MV1000 x 1000 A Element (0.5 mm/sec) 
        R = 0.0024*y^4 - 0.0735*y^3 + 0.0899*y^2 + 12.487*y; 
    
        if (x < 0) 
        R = -R; % to recover negative sign 
        end 
         
end 



174 

 

%**************************************************************** 
%***                                                          *** 
%***                 Mass Matrix - MHP Analysis               *** 
%***                                                          *** 
%***  Programmer                 :        Adam Bogage         *** 
%***  Date                       :        Spring 2008         *** 
%***  Version                    :        2.0                 *** 
%***  Advisor                    :        Professor Shing     *** 
%***  File Name                  :        Mass.m              *** 
%***                                                          *** 
%**************************************************************** 
%**************************************************************** 
 
function[M] = Mass()   % Returns Mass matrix 
 
    % Mass Matrix at Center of Gravity (COG) 
    Mcog = [176.061, 0,0;0,176.061,0;0,0,2.495*10^7]; 
    % Matrix Relating COG DOF and Desired DOF 
    %O = [1,0,0;0,.5,.5;0,(-1/753.65),1/753.65]; 
    O = [1,0,0;0,.5,.5;0,(-1/650),1/650]; 
    % Desired Mass Matrix 
    M = O'*Mcog*O; % in kips 
     
         
end 
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%**************************************************************** 
%***                                                          *** 
%***            Fender Damping Curve - MHP Analysis           *** 
%***                                                          *** 
%***  Programmer                 :        Adam Bogage         *** 
%***  Date                       :        Spring 2008         *** 
%***  Version                    :        1.3                 *** 
%***  Advisor                    :        Professor Shing     *** 
%***  File Name                  :        DampingNew.m        *** 
%***                                                          *** 
%**************************************************************** 
%**************************************************************** 
 
 
function[R] = DampingNew (x, fs, alpha, fendersize)  
    % Returns force based on velocity, static force and size 
     
    %x = current velocity 
    %fs = static force 
    %alpha = 1.21 currently 
    %fendersize = in inches 
     
    % Stores direction 
    if x >= 0 
        sign=1; 
    else 
        sign=-1; 
    end 
     
    y = abs(x); % Absolute Value of Velocity 
 
    % Damping Force 
    R = (alpha*abs(fs)/(fendersize^(0.45))) * (y + 0.0000001)^(1-0.55); 
     
    % Recovers direction 
    R = sign*R;     
            
end 
 




