Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Training a Probabilistic Graphical Model With Resistive Switching Electronic Synapses

Abstract

Current large-scale implementations of deep learning and data mining require thousands of processors, massive amounts of off-chip memory, and consume gigajoules of energy. New memory technologies, such as nanoscale two-terminal resistive switching memory devices, offer a compact, scalable, and low-power alternative that permits on-chip colocated processing and memory in fine-grain distributed parallel architecture. Here, we report the first use of resistive memory devices for implementing and training a restricted Boltzmann machine (RBM), a generative probabilistic graphical model as a key component for unsupervised learning in deep networks. We experimentally demonstrate a 45-synapse RBM realized with 90 resistive phase change memory (PCM) elements trained with a bioinspired variant of the contrastive divergence algorithm, implementing Hebbian and anti-Hebbian weight updates. The resistive PCM devices show a twofold to tenfold reduction in error rate in a missing pixel pattern completion task trained over 30 epochs, compared with untrained case. Measured programming energy consumption is 6.1 nJ per epoch with the PCM devices, a factor of 150 times lower than the conventional processor-memory systems. We analyze and discuss the dependence of learning performance on cycle-to-cycle variations and number of gradual levels in the PCM analog memory devices.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View