Understanding latent interactions in online social networks
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Understanding latent interactions in online social networks

Published Web Location

https://doi.org/10.1145/2517040
Abstract

Popular online social networks (OSNs) like Facebook and Twitter are changing the way users communicate and interact with the Internet. A deep understanding of user interactions in OSNs can provide important insights into questions of human social behavior and into the design of social platforms and applications. However, recent studies have shown that a majority of user interactions on OSNs are latent interactions , that is, passive actions, such as profile browsing, that cannot be observed by traditional measurement techniques. In this article, we seek a deeper understanding of both active and latent user interactions in OSNs. For quantifiable data on latent user interactions, we perform a detailed measurement study on Renren, the largest OSN in China with more than 220 million users to date. All friendship links in Renren are public, allowing us to exhaustively crawl a connected graph component of 42 million users and 1.66 billion social links in 2009. Renren also keeps detailed, publicly viewable visitor logs for each user profile. We capture detailed histories of profile visits over a period of 90 days for users in the Peking University Renren network and use statistics of profile visits to study issues of user profile popularity, reciprocity of profile visits, and the impact of content updates on user popularity. We find that latent interactions are much more prevalent and frequent than active events, are nonreciprocal in nature, and that profile popularity is correlated with page views of content rather than with quantity of content updates. Finally, we construct latent interaction graphs as models of user browsing behavior and compare their structural properties, evolution, community structure, and mixing times against those of both active interaction graphs and social graphs.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View