Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Synaptic weight dynamics underlying memory consolidation: Implications for learning rules, circuit organization, and circuit function

Published Web Location

https://www.pnas.org/doi/10.1073/pnas.2406010121
No data is associated with this publication.
Creative Commons 'BY-NC' version 4.0 license
Abstract

Systems consolidation is a common feature of learning and memory systems, in which a long-term memory initially stored in one brain region becomes persistently stored in another region. We studied the dynamics of systems consolidation in simple circuit architectures with two sites of plasticity, one in an early-learning and one in a late-learning brain area. We show that the synaptic dynamics of the circuit during consolidation of an analog memory can be understood as a temporal integration process, by which transient changes in activity driven by plasticity in the early-learning area are accumulated into persistent synaptic changes at the late-learning site. This simple principle naturally leads to a speed-accuracy tradeoff in systems consolidation and provides insight into how the circuit mitigates the stability-plasticity dilemma of storing new memories while preserving core features of older ones. Furthermore, it imposes two constraints on the circuit. First, the plasticity rule at the late-learning site must stably support a continuum of possible outputs for a given input. We show that this is readily achieved by heterosynaptic but not standard Hebbian rules. Second, to turn off the consolidation process and prevent erroneous changes at the late-learning site, neural activity in the early-learning area must be reset to its baseline activity. We provide two biologically plausible implementations for this reset that propose functional roles in stabilizing consolidation for core elements of the cerebellar circuit.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item