Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Plankton population dynamics and methylmercury bioaccumulation in the pelagic food web of mine-impacted surface water reservoirs.

Abstract

UNLABELLED: Thermal stratification of reservoirs can lead to anaerobic conditions that facilitate the microbial conversion of mercury (Hg) to neurotoxic and bioaccumulative methylmercury (MeHg). But MeHg production is just the first step in a complex set of processes that affect MeHg in fish. Of particular relevance is uptake into suspended particulate matter (SPM) and zooplankton at the base of the pelagic food web. We assessed plankton dynamics and Hg uptake into the pelagic food web of four Hg-impaired California water reservoirs. Combining water chemistry, plankton taxonomy, and stable carbon (C) and nitrogen (N) isotope values of SPM and zooplankton samples, we investigated differences among the reservoirs that may contribute to differing patterns in MeHg bioaccumulation. Methylmercury accumulated in SPM during the spring and summer seasons. Percent MeHg (MeHg/Hg*100%) in SPM was negatively associated with δ15N values, suggesting that fresh algal biomass could support the production and bioaccumulation of MeHg. Zooplankton δ13C values were correlated with SPM δ13C values in the epilimnion, suggesting that zooplankton primarily feed in surface waters. However, zooplankton MeHg was poorly associated with MeHg in SPM. Our results demonstrate seasonal patterns in biological MeHg uptake and how multiple data sources can help constrain the drivers of MeHg bioaccumulation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10750-022-05018-0.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View