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CAFE: A Framework for Cell Application Development 
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The IBM Cell processor is a heterogeneous multi-core architecture designed to 

demonstrate exceptional levels of performance improvement for compute-intensive 

applications.  The streamlined design of its Synergistic Processing Units (i.e. small 

local store, no cache, limited branch prediction, no dynamic instruction reordering) 

presents a new set of challenges for application developers as they are now required to 

explicitly control the flow of data amongst the processors. 

Therefore, in this thesis we introduce a lightweight, flexible framework library 

called Cell Architecture Framework and Extensions (CAFE) to assist developers in 

taking advantage of this computational power without forcing a single programming 

model onto their applications.  CAFE takes a more minimalistic approach than other 

frameworks by presenting low-level abstractions and utilities designed to help 

partition and transfer data between the cores.  As a result, programmers can develop 
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applications using a reasonably high level interface, yet still retain explicit control 

over the flow of data.  We believe that these characteristics are very important to 

developing high-performance applications in the Cell environment. 

To motivate our design decisions, we provide an in-depth examination of 

where these aforementioned implementation challenges appear and discuss a range of 

countermeasures that may be successfully employed.  We also present an assortment 

of example applications that each utilize CAFE in a different manner to help show its 

versatility. 
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Chapter 1:  Introduction 
 

1.1 Architecture Trends and Revolutions 

Undoubtedly, programmable computer architecture has come a long way since 

its beginnings in the mid-twentieth century.  It is reasonable to say that for the past 

half-century we have been “living under the cover” of Moore’s Law, which states that 

“the complexity for minimum component costs has increased at a rate of roughly a 

factor of two per year” and that “certainly over the short term this rate can be expected 

to continue, if not to increase.” [Moore65].  This prediction has remained as a 

comfortable trend in computer hardware engineering, despite the fact that the speed of 

memory has not been able to match the pace. 

However, although the size of transistors continues to shrink with each new 

generation, we have found ourselves in an interesting time when Moore’s Law has 

started to fail due to some fundamental physical laws, such as power consumption and 

heat dissipation.  These obstacles have pushed computer architects in a different 

direction: rather than using the next generation of transistors to increase the 

complexity of the processor in an effort to gain operational speed, architects have 

started to duplicate more simplified versions of processors across the chip in a stamp-

like manner.  This has given rise to the dual- and quad-core processors available on 

the conventional hardware market today. 

Before this transition occurred, another revolution took place during the mid-

90’s: the advent of conventional graphics hardware accelerator.  Graphics Processing 

Units (GPUs) are a type of coprocessor specialized for performing common operations 
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found in computer graphics: transformations, interpolations, etc.  In particular, they 

are designed to take a chunk of data (from hereon also referred to as the “payload”) 

and perform the same set of operations on each of its components.  For instance, at a 

high-level, a simple three-dimensional object is composed of a mesh of triangles that 

define its geometric shape and a set of texture coordinates associated with each 

triangle vertex to define its appearance.  When we want to place the model in a scene 

for visualization, we must apply a transformation to all of the vertices of the triangles 

in the mesh, followed by an interpolation of the texture using the corresponding 

texture coordinates across each triangle for the sake of rendering.  Since there may be 

thousands (or millions!) of triangles for each object, it is easy to appreciate the 

benefits in having dedicated hardware support for such operations.  It is also readily 

apparent that such operations are independent of each other (no triangle vertex 

transformation depends on the results of any other triangle vertex transformation, and 

so on…), and therefore can be computed in parallel. 

As graphics hardware has matured, there has been a definitive movement in the 

direction of programmability and generality.  It now presents us with an architecture 

that performs the aforementioned operations in parallel at a very high rate of 

throughput via a paradigm called streaming.  Streaming (or more formally: stream 

processing) performs the same computation across the elements of a single payload.  

Until recently, the streaming components supported on the GPU were strictly 

graphics-specific, including dedicated vertex and texture memory buffers and 

operation kernels in the form of vertex and pixel shader programs.  However, this 

meant that anyone who wanted to use the GPU simply as a coprocessor for performing 
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non-graphics-specific computations was forced to repackage and mask the data as if 

they were a vertex or texture buffer as well as reformulate computations as if they 

were vertex or pixel shaders.  Such a task can actually be quite an undertaking and is 

somewhat analogous to asking someone to cram a square peg into a round hole—it 

can probably be done, but it will take a lot of unnecessary force and the end result isn’t 

going to be pretty.  As it turned out, after seeing the effectiveness of the GPU in the 

realm of graphics, other areas of computer science—especially the scientific 

computing community—began to take an interest in utilizing its power for their own 

purposes, producing a new demand for more generality in the native operations and 

pipeline.  The hardware and research that stemmed from this movement has been 

labeled General-Purpose Computing on the GPU (GPGPU). 

  

1.2 Parallelism 

 There are two types of parallelism exploited in modern computing: control-

level parallelism and data-level parallelism.  As we will see, both types of parallelism 

are useful and important in their own respects and each contributes to hardware and 

software efficiency in their own unique way. 

 

1.2.1 Control-Level Parallelism 

Control-level parallelism is the action of processing two different courses of 

execution at the same time.  This is made possible on many different levels within a 

machine (hardware threads, hardware operations on different units) and applications 

(software threads).  On a single processor, the façade of performing multiple tasks 
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simultaneously (or multitasking) is simulated by managing the amount of time each 

task is allotted to spend on the processor.  This act of scheduling is typically 

performed by the operating system (or a user-level thread scheduler) to ensure that 

each task is given a chance to make progress.  On multi-core processors, the operating 

system will usually split the task queue among the available processor cores and 

handle the scheduling on each core individually. 

Control-level parallelism is also very important to utilizing the processor 

efficiently.  The classic example is when an application requires a piece of data from a 

slower device (e.g. hard drive) or from across a network.  Since many hundreds or 

thousands of cycles may pass before that data arrives, it would be more efficient to 

allow the processor to attend to the computational needs of other tasks in the 

meantime. 

We can draw a correspondence between the CPU and control-level parallelism.  

This is the reason why conventional CPUs are designed to switch among different 

tasks (more formally known as context-switching) as efficiently as possible: during 

normal operation, the CPU must handle frequent context-switches amongst all the 

software applications running on the machine, each with its own program counter and 

application-specific data processing operations. 

 

1.2.2 Data-Level Parallelism 

As one may have suspected, data-level parallelism is the act of performing the 

same set of operations on different pieces of data simultaneously.  In accordance with 

convention, we will refer to this set of operations as a kernel.  What’s more is that the 
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techniques of data parallelism can be applied to many different levels within the code: 

from the aforementioned kernel level even down to the level of individual instructions. 

The best concrete example of this is type of parallelism is found in a Single 

Instruction Multiple Data (SIMD) instruction [Tommesani03].  For instance, consider 

how vector arithmetic finds the sum of two vectors A and B: we simply add each of the 

components independently: 

( ) ( ) ( )nnnn babababbbaaa +++=+ LLL 22112121 . 

This is exactly the mechanics behind SIMD addition, and can be extended to a number 

of other computational and conditional logic operations.  In the interest of multimedia 

applications, SIMD operations are conventionally performed on 128-bit quadwords at 

a time, as shown in Figure 1.1 below. 

 

Figure 1.1: Quadword SIMD Operation 

 

Data-level parallelism is at the heart of processing on the GPU since its 

purpose (at a low level) is to perform the same operation over a large set of data.  In 

fact, we can also identify the multiple layers of data parallelism being performed: at 

the highest level we have multiple triangle meshes that make up our scene; at the 
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component (triangle vertex) processing level we have a list of independent 

transformations; and at the instruction level we have SIMD operations. 

 

1.3 Next-Gen Architecture: IBM Cell 

 Although we have dedicated an entire chapter to the Cell architecture, we will 

briefly introduce it here enough to present the context of the work that follows. 

In short, the Cell processor is currently on the bleeding edge of hardware 

technology.  In terms of its architecture, it is a hybrid between the multi-core 

processors and the GPUs we introduced earlier, though assembled heterogeneously.  

Cell has nine separate cores: one for running the operating system and performing 

control-level parallel tasks (PPU), while the other eight conventionally serve as 

coprocessors for data parallelism though they can operate independently of the PPU’s 

control (SPUs).  As a whole, the Cell was designed around the streaming paradigm, 

though in a more general fashion as the eight coprocessors are not built on graphics-

specific structures like a GPU. 

The Cell processor was specifically designed to perform massive amounts of 

single-precision floating-point operations as quickly and efficiently as possible.  

Unlike a conventional CPU which is designed to perform reasonably well for a general 

mix of applications, the Cell is specialized to demonstrate excellent performance on a 

core set of target applications (including multimedia processing and compression, real-

time simulation, and games), while exhibiting less-than-desired performance results 

for other types of applications (such as operating systems or database management 

software).  As such, software packages from each of these core target application 
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categories require an enormous amount of computational power.  Thus, the eight 

coprocessors within the Cell were designed to perform extremely fast single-precision 

floating-point operations in parallel. 

However, although it makes for a very interesting configuration for a parallel 

machine, the Cell’s architectural design promotes a few fundamental differences 

within code development practices from those found in conventional parallel 

computing say, with MPI [MPI03].  These differences include a rigid constraint on 

memory alignment and a limited remote local store.  However, the foremost of these 

differences is the exposure of the memory hierarchy to the programmer, who is now 

expected to carefully manage both code and data across the coprocessors.  In fact, 

developers can dynamically upload code to the SPUs.  While this capability gives 

developers a great deal of control and the opportunity to achieve previously 

unattainable performance benchmarks, it also imposes a steep learning curve, which 

requires even the novice programmer to have a deep understanding and intimate 

knowledge of the underlying hardware. 

In consequence, the work presented in this thesis shows the struggles and 

triumphs that have been required in an attempt to tame this beast, and presents a 

solution in the form of a set of libraries, which we refer to as a “framework”, to ease 

the efforts of other aspiring Cell developers. 
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1.4 CAFE: Cell Architecture Framework and Extensions 

Data partitioning and, more generally, data transfer preparation is a common 

problem in all non-trivial Cell applications. However, while the IBM-distributed 

software development kit (commonly referred to as the CellSDK) does an excellent 

job at providing low-level hooks into the hardware, it also makes the partitioning of 

data a meticulous and error-prone task, due to the level of intimacy required between 

the programmer and hardware (previously introduced in Section 1.3).  It has come 

with our own experience that the mechanics of data partitioning can distract 

developers from spending their time on the more interesting areas of the application, 

such as scheduling, data flow, and vector processing, not to mention the ubiquitous 

issues behind the design and implementation of the algorithms and overall architecture 

of the code base. 

We are not the only ones to have recognized this trend as both commercial and 

academic solutions have been developed to help alleviate this issue and offset the 

learning curve set forth by the Cell processor.  Unfortunately, these solutions have also 

taken it upon themselves to provide their clients with a proxy pipeline that confines 

application development into a particular paradigm as opposed to allowing the 

programmers to retain control of the scheduling and data transfer methods utilized in 

order to accomplish their tasks.  We believe that the power to manage the scheduling 

and transfer of data is particularly important in the area of high performance 

computing, and recognize that they should always be approached on an application-to-

application basis since it is more often the case that the programmer knows their data 

far better than any library ever could. 
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In the light of this observation and others, we set out to create a minimalistic 

framework to assist the Cell development community without usurping the control 

over performance critical application components.  The thesis that follows is a 

discussion of our work and a presentation of our framework libray: Cell Architecture 

Framework and Extensions (CAFE).  Our main contributions include a module to 

automatically assess and partition data sets into suitable payload sizes for the Cell’s 

SPUs, where the bulk of the computational load is resolved.  We have also formalized 

and provided the structures required to establish a data transfer preparation paradigm 

for ferrying payloads to and from the SPUs without seizing control of the method of 

scheduling.  Finally, due to the nature of our research lab, we designed the framework 

to ease the porting and development of the graphic and algorithmic processes 

employed by the Scalable City project (see Appendix A). 

 

1.5 Conventions 

 Briefly, we would like to lay out a few conventions used throughout this thesis.  

First and foremost, we are primarily concerned with developers as opposed to 

application end-users.  In fact, we refer to programmers who utilize our framework or 

the framework of others as clients.  Consequently, we will use the words developer, 

programmer, and client interchangeably. 

 Additionally, in this thesis we will discuss various design patterns for Cell 

application development.  These patterns are also referred to as templates and 

programming models.   Furthermore, these patterns are usually focused around the 
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pipeline (read: flow of data) between the cores.  As such, we will sometimes simply 

refer to the patterns by the pipelines they entail. 

 The term kernel is used throughout the thesis, yet is very context-dependent.  

For example, in Chapter 3 different APIs refer to their SPU programs as kernels, while 

in the image processing application of Chapter 6 kernel refers to the image filter.  We 

have been careful to define this term as the context changes. 

 

1.6 Thesis Outline 

To conclude our introduction, we present an outline of the thesis to follow and 

highlight some of the important features of the road ahead. 

First, we will introduce the Cell processor in detail and touch on some of the 

finer points required for developing non-trivial applications for it.  While a complete 

overview of the hardware would require a more in-depth discussion, we believe that 

Chapter 2 provides sufficient detail for a solid understanding of the hardware and the 

capabilities that it provides. 

Second, in Chapter 3 we will review prior and current work on APIs and 

languages.  In particular, our discussion will revolve around how prior solutions help 

ease the steep learning curve that has been set by the complexity and exposure of the 

Cell architecture to the programmer. 

Third, we will examine the initial work that was done to explore some of the 

limitations of the hardware as well as produce some baseline results in order to help 

motivate some of the design decisions made in CAFE.  We believe this to be a very 

important chapter as it reveals the difficulties found in Cell development at the 
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implementation level.  Furthermore, we will also present and evaluate various possible 

approaches to augmenting these difficulties.  It is from this set of methodologies that 

we generate a foundation for our framework. 

In Chapter 5, we will formally introduce the framework library and the various 

design decisions that lie behind its conception and implementation.  In addition to a 

presentation of the structures and mechanisms available at a conceptual level, we also 

provide a pair of complete templates for utilizing CAFE in a Function-Offload manner. 

Afterwards, Chapter 6 presents of a few implementation examples using our 

framework to build Cell applications.  We have chosen these applications based on a 

number of factors including exhibiting the versatility of applications our framework 

constructs support. 

Finally, we will discuss some future work that could be done to continue to 

extend the framework as well as further improve application development on the Cell 

processor. 
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Chapter 2: Introducing the Cell Processor 
 

We now provide a brief introduction to the IBM Cell Broadband Engine (or as 

it is more conventionally called: “Cell”) hardware.  This chapter is by no means 

comprehensive, but is sufficient to give the reader an appreciation for the capabilities 

of the system.  Throughout, we will be sure to visit particular programming aspects 

which stem from the unique design decisions made for the Cell. 

We would also like to note that unless specified otherwise the specs given 

below are for a single Cell processor only and scale within the Cell BladeServer, 

which has two Cells per blade and up to four blades in the system at UC San Diego. 

The following specifics and details have been gathered from [Kahle05], 

[Gschwind00], [Hofstee05], the IBM Cell Broadband Engine Architecture Guide 

[IBM05], and the IBM Cell Programming Handbook [IBM06a]. 

 

2.1 The Cell Processor 

The Cell is made up of two types of processors: a PowerPC front-end (Power 

Processing Unit: PPU) and eight synergistic vector processors (Synergistic Processing 

Units: SPUs).  Each processor type requires a different, separate program to be written 

and compiled with different modified versions of gcc (or g++) provided in the 

CellSDK.  It is interesting to note that the generated binaries can be run individually 

on their respective processors; programs for the PPU are just like any other application 

written for the PowerPC architecture, while the programs written for the SPUs, called 

“spulets”, are designed to be simple and “encourage porting and incremental 
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refinement of legacy code on the SPU” [IBM spulet sample].  In our case, we will 

only discuss the instance when the two types of processors are interdependent. 

 

Figure 2.1: Cell Processor Floorplan 

 

2.2 PPU: PowerPC Processing Unit 

As mentioned above, the PPU is just like a conventional PowerPC.  It is a 64-

bit RISC processor, clocked at 3.2 GHz.  It includes a VMX vector processing unit 

which supports the AltiVec SIMD vector instruction set extensions.  It has 32 128-bit 

vector registers, separate instruction and data L1 caches (32 KB each), and a unified 

512 KB L2 cache.  There are also two available hardware threads and a traditional 

virtual memory subsystem. 

The PPU’s main purpose is to run the operating system, manage system 

resources, and serve as the control manager for the SPUs.  In general, there is little 

difference (if any) in programming for this side of the Cell from conventional C/C++ 

application development practice. 
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2.3 SPU: Synergistic Processing Unit 

Synergistic Processing Units are named for the mutual dependence they have 

with the PPU.  In terms of architecture, the PPU is designed to handle control-

intensive tasks and perform efficient task-switching, while the SPUs are designed to 

handle compute-intensive tasks.  Essentially, this means that the SPUs rely on the PPU 

to run the application control-thread and feed them both code and data, whereas the 

PPU relies on the SPUs to perform most of the computational heavy-lifting1. 

 

2.3.1 Processor 

The SPU is also a 64-bit RISC 3.2 GHz processor, but runs its own custom 

“vector only” instruction set.  We say “vector only” because even scalar operations are 

loaded into vector registers and run using vector operations during execution.  This 

translates to the following: 

1. Insert scalar value into the preferred slot2 of the vector register 

2. Perform the operation using the corresponding vector operation 

3. Extract the scalar result from the preferred slot of the vector register 

As one might presume, this is a very important fact to keep in mind when 

programming for the SPU as scalar operations are not truly as atomic as they look 

from a code perspective. 

The SPU has a unified register file containing 128 128-bit vector registers.  By 

“unified” we mean that all supported data types (integer, single-precision floating-

point, and even logical operators) use the same register file. 
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Also, the SPU is a dual-issue processor.  This means that it has two separate 

pipelines, named odd and even, for executing instructions and can execute one 

instruction from each pipeline every cycle.  All load and store instructions are 

processed in the odd pipeline, while all other operations are executed in the even 

pipeline.  The pipeline can issue a single-precision floating-point operation every 

cycle with a latency of six cycles, while a double-precision floating-point operation 

can be issued every 7 cycles in addition to the same 6-cycle latency. 

 

2.3.2 Local Store 

One of the major design goals for the SPU was predictability.  Essentially, the 

designers at STI3 wanted a deterministic operating environment in which one can 

statically determine the performance of code.  In other words, they wanted to establish 

a set of rules such that the running time of the same code would always be the same.  

While at first glance this may sound a bit silly, but consider the flow of data that goes 

on under the hood of a conventional system: when an instruction is to be executed, the 

data operands must be loaded into registers, but this data may currently reside 

anywhere in the memory hierarchy… L1, L2, L3 (if available), main memory, on-site 

storage, or maybe even storage located across a network.  This implies that we may 

not know how long it could be before that data may be ready for the instruction to use.  

Certainly, in most cases the data is close to the top of the hierarchy thanks to spatial or 

temporal locality, or both, but the fact still remains that the time it takes for a piece of 

data to be loaded into a register is unknown and can only be narrowed down to a range 

of cycles depending upon where in the hierarchy the data currently resides. 



16 

 

 This brings us back to the issue of predictability on the SPU.  To attain the 

goal of creating a deterministic operating environment, the designers at STI wanted to 

avoid the irregular latency times built up by moving data up and down memory 

hierarchies.  The solution was the aforementioned large register file in combination 

with a 256 KB SRAM local store (LS).  The LS is allotted for both code and data, and 

can always be accessed in 6 cycles.  Also, all loads and stores are made on a 16-byte 

aligned boundary without translation, paging, or protection. 

We would like to make it clear that although it is a relatively small, fast 

memory close to the processor, the local store is not a cache, wherein pieces of data 

are brought in and swapped out under automatic hardware control.  In fact, there is no 

cache anywhere on the SPU.  This leads to the exciting and important observation that 

since there is no cache, there can be no cache misses! 

One final detail must be added to complete our discussion of the SPU’s 

characteristic of predictability: in-order execution.  In the interest of speed, most 

conventional processors today have the ability to execute instructions out of their 

specified issue order (referred to as out-of-order execution), provided that the ordering 

does not affect the program correctness.  This feature is, by design, not available on 

the SPU.  Thus, we gain the ability to walk down the assembly code instruction by 

instruction and assign cycle times to each line for the entirety of the program.  This 

allows for SPU binaries to be statically timed, providing Cell developers with a 

definitive guide to help them examine and streamline any stalls that may be present in 

their code. 
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2.3.3 Branch Prediction 

While the predictability attribute of the SPU architecture sounds pretty nice, 

there is one final, yet important feature to discuss: branch prediction.  There is no 

hardware branch predictor present on the SPU.  In other words, all branch prediction is 

done at the software level. There is an 18-cycle latency for mispredicted branches.  To 

counter this performance penalty, there are a couple of software mechanisms in place, 

including an inline branch-hint directive and a select intrinsic4. 

The inline branch-hint directive is exactly what it sounds like: in the code, the 

programmer can specify whether the branch should be predicted as taken or not taken 

(by default, all branches are predicted as not taken).  The directive can be used for 

either static or dynamic branch prediction (see Section 1.6 of IBM C/C++ Language 

Extensions for Cell Broadband Engine Architecture [IBM06e] for more details). 

Given a bit pattern, the select intrinsic allows for individual bits to be selected 

from one vector or another.  For example, given two vectors A and B, we can choose 

bits from A or B with a bit pattern P, where a 0 in P says to choose the bit from A and 

a 1 in P says to choose the bit from B. 

 

Figure 2.2: SPU Select Intrinsic 
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The significance of the select intrinsic from a programming perspective is that 

one can compute both routes of a branch and then select the result based on a pattern 

vector which can be created via one of the comparison intrinsics.  This is often 

desirable since it puts the issue back in the SPU’s dominant domain of raw 

computation. 

  

2.4 Communication Mechanisms 

Communication between the two types of processors is handled via three 

mechanisms: mailboxes, Direct Memory Access (DMA), and signal notification 

registers.  It should also be noted that SPUs can communicate with other SPUs, which 

allows developers to employ a programming model called Chaining (see Section 2.6); 

however, in the interest of simplicity, here we will focus the discussion on 

communication between the PPU and SPU. 

 

2.4.1 Mailboxes 

Mailboxes are queues used to pass small (32-bit) messages back and forth 

between the PPU and an SPU.  Each SPU has two types of queues: a pair of outbound 

(SPU to PPU) queues, and an inbound (PPU to SPU) queue.  It should be noted that 

messages cannot be passed between two SPUs via mailboxes. 

Both outbound mailbox queues are only a single message deep; one is for 

general purpose messages to the PPU and the other is used for interrupts.  The PPU 

may poll these queues before making the blocking call to actually read from them.  A 

practical use for this is when the SPU has finished processing its current batch of data 
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and needs to tell the PPU it is done; we certainly do not want to hold up any other 

tasks the PPU may need to do (data preparation, checking other SPU threads to see if 

they have finished, etc…), so we poll the SPU outbound mailbox, respond 

appropriately, and continue on.  We will take a look at the other side of this technique 

in Chapter 4 when we discuss the SPU-driven pipeline. 

The inbound queue can hold up to four messages at a time for the PPU to send 

to the SPU.  However, if the PPU sends more than four messages to an SPU, the 

fourth message will continue to be overwritten by subsequent sends until the SPU 

performs a mailbox read.  To avoid this undesired side-effect, one could have the PPU 

send the first four messages and then wait on the SPU to reply through the outbound 

mailbox that all the messages have been read, signaling the PPU that mailbox message 

sending may resume.  This simple design pattern serves as a way to synchronize the 

two processors if the application requires such a sequence of short messages to be 

dispatched to the SPU. 

Mailboxes are useful for sending addresses and action codes (e.g.: exit / 

continue, success / failure) as we shall see in Chapter 5.  However, sending 32-bits at a 

time will not suffice for real-world data processing – that’s where DMA comes in. 

 

2.4.2 Direct Memory Access (DMA) 

The main method of data transfer on the Cell processor is Direct Memory 

Access (DMA), which takes place on the Element Interconnect Bus (EIB).  Briefly, 

the EIB (see Figure 2.1) is composed of four rings for transferring data at an internal 
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bandwidth of 96 bytes per cycle.  Two of the rings are directed in the clockwise 

direction while the other two are counter-clockwise. 

On the EIB, DMA requests are handled asynchronously, allowing for 128 

simultaneous transfers between main storage and a SPU local store (shared across all 

eight SPUs).  Each DMA transfer is invoked with a user-defined tag which can later 

be used to wait on the transfer’s completion by reading the tag status.  It is important 

to note that DMA requests can be made in batches by simply invoking multiple 

transfers with the same tag t ; then, when the tag status for t  is read, the program will 

wait for all of the corresponding requests made with t  to complete.  We will discuss 

further applications for tags in Chapter 4. 

 
Figure 2.3: Cell Memory and Communications Structure 

 

The SPUs are designed to input / output data in increments of 128-bytes up to 

16 KB per request.  This is also subject to the constraint that all memory DMAed to 



21 

 

and from the PPU must be 16-byte aligned, though the vendor recommends that 

transfer data be 128-byte aligned for best performance. 

It is interesting to note that either processor type may invoke a DMA request 

from the other; however, the Memory Flow Controller (MFC) resides on the SPU so 

no matter where the request originated, all requests are actually made from the SPU 

under the hood (this is also why the queue names “inbound” and “outbound” are 

designated from the perspective of the SPU).  Therefore, to attain peak performance it 

recommended that DMA requests are exclusively made from the SPU. 

 

2.4.3 Signals 

The SPU signal notification channels are kind of like another pair of inbound 

mailboxes.  There are two channels, each for 32-bit signals.  An important difference 

between notification channels and configuration mailboxes is that the former can be 

configured in a reduction (many-to-one) in addition to their single direct-line 

configuration (one-to-one). 

We note that we have never employed the use of signal notification channels as 

mailboxes and DMA have been sufficient for the needs of all of our applications to 

date.  Signals have been suggested as a means of implementing a barrier construct for 

synchronizing the execution of the SPUs (see IBM DeveloperWorks Forum: Barrier 

Post [IBM07]).  However, a barrier can also be more efficiently implemented through 

the use of mailboxes, which is the method we chose to employ in our framework and 

use in the Chaining example discussed in Section 6.3.  
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2.5 Programming Models 

There are a few different programming models described in the Cell 

Programming Handbook.  The two most notable models are Function-Offload and 

Chaining.  As we shall later discover, the Function-Offload model is the more 

prominent of the two, largely due to its simple structure and function.  However, 

although the Function-Offload model serves as the basis for most of the program 

examples discussed in this thesis, we would like to emphasize the importance of 

Chaining and have dedicated an entire section on examining it usefulness and 

implementation in Section 6.3. 

 

2.5.1 Function-Offload Programming Model 

At its core, the Function-Offload programming model is analogous to a 

Remote Procedure Call [STI05].  It entails using the PPU for data preparation and 

SPU thread management, while the SPU is used for the data processing.  Figure 2.4 

shows this exchange of data between the two processors and an outline of their duties. 

The Function-Offload paradigm is intuitive with respect to data parallel 

programs: simply create multiple SPU threads, each running the same SPU program, 

and partition the data such that each SPU has a portion of the workload.  This way the 

data can easily be operated on in parallel. 
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Figure 2.4: Function-Offload Programming Model 

 

Certainly, the SPU binaries need not be the same across all eight SPU’s.  This 

means that we could setup half of the SPUs to do one operation and the other half to 

do another (or whatever configuration may be needed to best fit the data and 

requirements of the application).  Implementing this technique allows us to employ 

task-level parallelism on top of the aforementioned data-level parallelism.  To be sure, 

this flexibility is an extremely important characteristic of the Function-Offload 

programming model and should be exploited whenever appropriate. 

 

2.5.2 Chaining Programming Model 

The Chaining programming model is based on the idea of a firefighter bucket 

brigade.  First, the PPU sends a chunk of data to a SPU, which performs some amount 

of processing on the data.  Once complete, the SPU hands the data off to the next SPU 
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in line, which, in turn, performs its own operations.  This continues down the chain 

until the processing is complete and the data is finally sent back to the PPU, as shown 

in Figure 2.5.  Most assuredly, we can add the mechanics of pipelining into this 

procedure so that once the data has left the first SPU in the chain it can retrieve the 

next chunk of data to process in parallel. 

This paradigm works best with data that must be processed in stages, such as 

applying filters for image processing.  It can also be seen as an extension to the 

Function-Offload programming model where the chain in a Function-Offload setup 

has only one link. 

 

Figure 2.5: Chaining Programming Model 

  

As with the Function-Offload programming model, we will have more to say 

about Chaining in Chapter 4 when we examine some of the fundamental operations 

inherent in every Cell application. 

 

2.6 Summary 

 In this chapter we have introduced the Cell processor’s two processor types: 

the PPU and the SPU, how they communicate through mailboxes, DMA, and signal 

notifications, and a pair of useful programming models for developing applications on 
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the Cell.  We have also tried to point out important programming related aspects 

throughout the hardware discussion in hopes to give the reader a firm grounding for 

some of the higher-level details to come. 

 

Chapter 2 Notes: 

1. We acknowledge the fact that the SPUs can operate on their own (as “spulets”) 

but for the purposes of this work we will only discuss the SPUs as helper 

coprocessors to the PPU. 

2. The preferred slot refers to a 32-bit slot in a 128-bit vector register where 

results from reduction operations are stored.  This is also the slot where scalar 

operations are performed. 

3. STI refers to the Sony Toshiba IBM Cell Design Center in Austin, Texas, 

which was established in March of 2001. 

4. An intrinsic is a lightweight function corresponding to a single or small set of 

assembly instructions performing a fundamental operation. 
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Chapter 3: Related Work 
 

While Cell is still a very new platform, it is amazing how many “solutions” 

have been presented to assist developers in the new challenges presented by the 

hardware architecture.  In this chapter we will discuss several of these projects in 

hopes to set the playing field for the forthcoming discussion of our contribution.  

Additionally, we will study a pair of solutions that have been presented on the more 

general topic of programming stream processors to help establish some of the common 

ideas related to Cell in this area.  Finally, we will examine some of the published 

performance benchmarks for Cell, as well as compare and contrast the designs and 

features of the framework solutions. 

 

3.1 Stream Processing Solutions 

A streaming processor independently executes a kernel over all elements in a 

given input stream and places results in a corresponding output stream.  Examples of 

stream processors include conventional GPUs such as the [ATI R600] or [nVidia G80], 

the AMD Stream Processor [AMD Stream], and, in the light of its SPUs, Cell. 

As alluded to earlier, stream processing can yield enormous boosts in program 

performance for particular application classes by exploiting data parallelism.  This 

very same concept applies to the Cell SPUs and should be employed whenever 

possible. 

In this section we will discuss a pair of related solutions designed to assist 

programmers in developing software applications to efficiently take advantage of the 
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powerful benefits offered by stream processors: the Brook programming language and 

the PeakStream Platform. 

 

3.1.1 Brook Programming Language 

 Brook is an extension of the C programming language designed to assist 

developers in writing applications for stream processors.  It was initially designed for 

the Merrimac Streaming Supercomputer Project at Stanford University.  Since then, it 

has stemmed a descendant language called BrookGPU (from hereon just “Brook”), 

which allows developers to use the same language semantics to write stream programs 

for GPUs.  For the purposes of our discussion, we are primarily interested in the GPU 

derivative as described in [Buck04] and [BrookGPU]. 

The Brook programming language presents the GPU as a general coprocessor 

rather than a graphics-specific one.  Similar to other stream-oriented solutions, it was 

designed for computationally-intensive data-parallel applications with an emphasis on 

portability across consumer GPU platforms without sacrificing performance. 

 Brook defines programming constructs for streams and kernels.  A stream is a 

collection of data to be processed independently in parallel.  A kernel defines the 

scope in which streams may be operated on.  More precisely, a kernel is a special 

function (designated by the kernel keyword) that internally loops over the input 

stream(s), performing the set of operations within the body of the function for each 

element.  Brook also provides the mechanics for writing reduction operations to 

compute a single value from an input stream in a data-parallel fashion. 
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On the GPU, streams are stored as textures and kernels are compiled into pixel 

shaders.  The Brook compiler is responsible for splitting the kernel into multiple 

passes if the number of outputs requested is greater than what the hardware supports 

(this varies depending upon the shader version supported by the particular GPU).  This 

process maps onto the programmable graphics pipeline nicely since it is analogous to 

the method graphics programmers employ to produce composite effects (lighting is 

computed in one pass, blur is applied in another, etc.). 

The Brook Runtime (BRT) software layer sits on top of OpenGL [OpenGL] 

and Direct3D [Direct3D] (the leading software interfaces for graphics programming) 

for both nVidia and ATI APIs, allowing it to utilize the benefits of GL or D3D directly 

in order to achieve the best possible performance.  BRT also has a CPU backend, as 

well as a “close to metal” (CTM) backend [AMD CTM] to utilize the new initiative 

put forth from the ATI/AMD merger [Stokes06a].  Backends are chosen at runtime 

(either by hardware detection or user request) so there is no need to recompile Brook 

source code to switch. 

 

3.1.2 PeakStream Platform 

 The PeakStream Platform stemmed out of the Brook project outlined in the 

previous section [Stokes06b].  It was targeted to serving the High-Performance 

Computing (HPC) community1, with a standardized platform for developing 

computationally-intensive applications in C/C++ based on the stream programming 

model.  Although the platform is no longer available in the commercial market2, we 
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still would like to discuss the main ideas behind their feature set as they continue to 

remain quite relevant to our own interests in developing for the Cell.  

 The PeakStream Platform was a full product suite that included a compiler, 

virtual machine, system profiler, and a developer API with semantics similar to 

MATLAB [MATLAB] (in terms of its native support for matrix/vector operations) 

[Stokes07b].  Similar to other virtual machine based solutions, this implied that once 

compiled, the application could be run on any PeakStream supported platform. 

Under the hood, the PeakStream virtual machine handled the threading and 

scheduling for the execution of applications on specific hardware configurations, such 

as multi-core CPUs and CPUs with available GPUs [Woo07].  Programmers did not 

need to be aware of which hardware they were running on—only the structures and 

mechanics presented to them through the PeakStream API.  This meant that the 

PeakStream platform was essentially an architecture-agnostic standard for writing 

applications for stream processors. 

 Parallel kernels were created by the virtual machine at runtime, which allowed 

for configuration-specific optimizations to be performed before the kernels were sent 

down the pipe to the hardware cores.  The company took care to emphasize the point 

that since “target processors may have widely divergent architectures, it is important 

to make kernel density and boundary decisions at runtime rather than hardcoding them 

at application design time” [PeakStream07]. 

 The API included several data types, the foremost of which was the Array 

(akin to a matrix in MATLAB).  It also included an extensive math library that 

contained routines ranging from basic arithmetic operations to matrix multiplications 
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and convolutions.  Moreover, the available math functions were written to be far more 

accurate than those native to the GPU hardware—another key point appealing to the 

targeted High-Performance and Scientific Computing communities.  For example, 

[PeakStream07] presents a plot of the relative error for the exp() functions from a 

GPU (unspecified) and the PeakStream VM; while the GPU implementation results in 

relative error approaching 1.0e-05 as the magnitude of the function input grows, the 

PeakStream implementation results remain grouped around 1.0e-07 throughout. 

 The PeakStream Platform certainly sounded like a serious solution to many of 

the current problems facing application developers of this new generation of stream 

processor architectures, especially in the areas of hardware abstraction and platform 

portability.  Unfortunately for Cell developers, their emphasis was always more on 

exploiting the power of GPUs than hardware such as the Cell (undoubtedly due to 

their foundations in Brook). 

 

3.2 Function-Offload Solutions for Cell 

 We will now turn our attention to the most prominent programming paradigm 

for Cell: the Function-Offload programming model.  While there are other solutions 

which employ the Function-Offload model (some of which we will discuss in the next 

section), the Offload API and the RapidMind Development Platform proved to be the 

purest implementation examples of this paradigm.  However, it is interesting to note 

that these frameworks provide two very different interfaces for presenting the same 

programming paradigm to their clients.  As such, we will examine each of these in 

detail and compare their benefits and limitations. 
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3.2.1 Offload API 

The Offload API was developed by the Parallel Programming Lab at the 

University of Illinois at Urbana-Champaign as a byproduct of porting the Charm++ 

runtime system to the Cell [Kunzman06a] [Kunzman06b].  Although Charm++ uses 

the Offload API to extend the portability of applications that utilize Charm++ to the 

Cell, the Offload API is independent of Charm++; therefore, we will limit our 

discussion purely to the Offload API. 

In the Offload API, developers designate a work request to be executed on the 

SPU.  A work request associates processing code with a set of three data buffers: read-

only, read-write, and write-only.  To ensure data-parallelism, a work request must be 

independent of the other work requests that may be currently executing on the SPUs.  

Work requests are asynchronously dispatched to an event-driven SPU runtime that 

handles the mechanics of transferring input data to the SPU, executing the processing 

code, and transferring the output data back to the PPU. 

However, the Offload API operates under the following constraint: code must 

already be loaded onto the SPUs previous to the initialization of the Offload API.  

This implies that there is a major caveat to their paradigm: developers are forced to 

package all of their processing code into a single binary to be distributed across all of 

the SPUs, a characteristic that may be prohibitive to certain applications since, as we 

noted earlier, the 256 KB local store houses both code and data. 

Another caveat, though not as acute as the first, is that the Offload API does 

not expose any methods for bringing more data to the SPU during the work request 

execution.  This means that large operations must be serialized into several work 
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requests, which, in turn, invokes an unnecessary pair of data transfers in between the 

stages as intermediate data must be returned to the PPU only then to be DMAed back 

to the local store where it once was. 

Finally, we note two other minor caveats.  First, the Offload API, as its name 

suggests, does not support other programming paradigms, such as Chaining, which 

may prove to be more efficient for particular applications.  Secondly, the Offload API 

does not allow the programmer to specify a particular SPU to run on.  This is handled 

by the API automatically.  Such knowledge is useful for tasks like sorting as well as 

running a non-homogeneous set of programs on the available SPUs. 

In spite of these limitations, the Offload API provides a nice library solution 

that allows developers to easily push jobs onto the SPUs without attending to the 

matters of scheduling. 

 

3.2.2 RapidMind Development Platform 

The RapidMind Development Platform [RapidMind] is a commercial product 

developed by RapidMind Inc. (formerly Serious Hack Inc.).  It grew out of an open-

source research project from the University of Waterloo Computer Graphics Lab 

called Sh, a metaprogramming language that is embedded inside C++ for 

programming GPUs [libSh06].  Like Sh, code for the RapidMind Development 

Platform (from hereon just “RapidMind”) is evaluated and compiled at runtime for the 

target platform (multi-core CPUs, GPUs, or Cell), but is far more general purpose. 

With RapidMind, clients write a single source program as a single thread of 

execution.  Then, within this source developers specify which parts of the code they 
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want RapidMind to split and execute on multi-core processors in a data-parallel 

manner through the use of the metalanguage constructs [Du Toit07] [RapidMind07a].   

The RapidMind API supplies its own value and array types.  RapidMind 

values are fixed-sized tuples of scalars; they can contain any of the C++ standard types 

(such as int or float) or any of the supported non-standard types (such as a half-

precision floating-point).  Values can come in different sizes, though those with one to 

four elements are the most common.  As one might expect, a RapidMind array is 

simply a contiguous sequence of RapidMind values.  By using RapidMind arrays, the 

developer informs the backend that all operations performed on the elements 

contained within can be considered independent of each other, which allows the 

dynamic compiler to exploit data-parallelism and split the data accordingly so that 

computations can be divided amongst the cores.   

Also, in the RapidMind API kernel functions are called programs.  RapidMind 

programs are actually objects that are executed like a function but make special use of 

the value and array types.  When arrays are passed in as parameters to a program, it is 

analogous to calling the program on each of the array elements individually, which is 

an act of data-parallelism that can be exploited by the RapidMind backend without the 

need of any further direction by the programmer in terms of the data’s alignment, 

partitioning, or transfer to the other cores for parallel processing. 

To be sure, the main benefit to using RapidMind is that it allows the 

programmer to quickly gain the benefits of multi-core processors without having to 

explicitly deal with the issues of threading, message-passing, or data transfer.  As a 
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close second, once the code is written, it is portable to any platform that RapidMind 

supports, including a wide range of multi-core CPUs, GPUs, and Cell-based systems. 

Another notable aspect of developing with RapidMind is that there is no need 

for programmers to uproot their present development environment.  All of the 

aforementioned functionality is wrapped in a library that is linked via the C++ 

compiler—no strings attached.  Furthermore, the API supports incremental 

development by giving the programmer the freedom to choose which parts of the code 

will use RapidMind, which allows them to quickly parallelize “low-hanging fruit” 

components.  These characteristics are very important for developers who wish to 

parallelize large projects or legacy code.   

On the other hand, RapidMind is an industrial-strength commercial package 

with a deployment license starting at $1500, which places it out of the reach of a 

portion of the Cell development community [Hearst07].  While it has been stated on 

the Sh site that developers at RapidMind Inc. plan to release an open-source version in 

the likeness of the commercial one, it may be some time before this actually happens.  

In addition, RapidMind covers up the scheduling of the SPUs.  Since the inner 

workings of the package are unavailable, it is unknown if the RapidMind backend is 

capable of employing different programming paradigms, such as Chaining, in 

situations when it may be more efficient to do so.  Finally, like the Offload API, the 

ability to choose a specific SPU or group of SPUs to run on is not an option when 

using RapidMind, though, again, this may not be one of the programmer’s primary 

concerns when it comes to writing or porting an application to Cell. 
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3.3 Alternative Programming Models for Cell 

 In this section, we present some of the more exotic solutions to programming 

applications on the Cell: the Sequoia programming language, the MultiCore 

Framework, and Cell Superscalar.  These solutions are each based on their own unique 

programming paradigms different from the ones covered so far. 

 

3.3.1 Sequoia Programming Language 

 The Sequoia group claims that when writing a high-performance application, 

the developer must have “non-trivial knowledge of the underlying machine’s 

architecture” [Fatahalian06].  However, this requirement naturally discourages 

portability as there is always a trade-off between portability and performance.  

Sequoia responds to the emergence of so-called “exposed-communication” 

architectures where data movement is controlled in software between local and remote 

address spaces.  This additional level of control that these architectures provide comes 

at the price of further complicating the design and implementation of software 

applications.  As such, the Sequoia programming language [Sequoia] is intended to 

allow the developer to construct bandwidth-efficient parallel applications for exposed-

communication architectures while maintaining portability. 

 The Sequoia language presents an abstract hierarchical memory model (also 

referred to as a “tree of memories” [Sequoia]) that hides the lower level architecture 

configuration, e.g. a multi-core chip, Cell blade, or even a cluster of uniprocessors.  

This differs from approaches in other parallel languages such as Unified Parallel C 

[UPC] and Titanium [Titanium] since they are primarily designed to facilitate the 
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movement of data “horizontally” across the processors of a parallel machine, while 

Sequoia’s model facilitates the movement of data “vertically” through the memory 

hierarchy.  Consequently, the programmer is required to design their applications to 

map onto this hierarchy in a divide and conquer tree-like manner.   

 One of the main benefits to Sequoia is that the architecture-specific method of 

communication via DMA, MPI message passing, or even a cache prefetch instruction, 

is all hidden under the hood, yet exposed through a uniform interface.  This ensures 

developers can still gain the benefits of explicit communication while producing a 

portable solution.  However, it should be noted that only vertical communication is 

allowed throughout the memory hierarchy, and thus it is not possible to directly pass 

data between sibling nodes.  In order to cater to a node cluster in which there is no 

physical hierarchy of memory, Sequoia provides programmers with the ability to 

virtualize levels within the memory hierarchy utilized by the software.  Data stored 

within a virtual memory level will be distributed across the physical memories of its 

children and when communication takes place between a virtual parent and its 

physical child, the appropriate horizontal transfers are employed.  All of these virtual 

mechanics are transparent to the programmer and are handled by the Sequoia compiler 

and runtime.  As a result, memory level virtualization provides developers with the 

flexibility to design their software around a memory hierarchy that best fits the needs 

of the application without having to be concerned with the possibility that levels of 

this custom hierarchy may be absent in the target platform(s).   

 Sequoia’s core abstraction is the task, a pure function similar to a Brook kernel 

though without the syntactical sugar provided via a stream data type.  Tasks are run in 
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parallel (or serially if not run on a parallel architecture), and mark the granularity of 

parallelism presented by the language.  Each task is isolated into its own address space 

without the ability to communicate with other tasks.  Hence, Sequoia exclusively 

handles data-parallelism through the Function-Offload programming model. 

Tasks are written to be executed at a particular level within the memory 

hierarchy exposed by the language.  As such, tasks are considered “abstract” because 

they are not actually bound to any memory until they are compiled and specialized for 

a particular architecture.  The step of specialization is delineated through a script-like 

mapping specification separate from the source code.  This approach separates the 

algorithm from its tunable parameters and is useful for hardware-specific application 

performance tuning. 

With regards to Sequoia’s Cell implementation, tasks at the leaf node level 

(equivalent to the local store level) are executed on the SPU, while non-leaf “inner” 

node tasks (equivalent to the level of main memory) are executed on the PPU.  Due to 

the size constraints of the SPU, individual leaf node tasks are compiled as SPU 

overlays3 and injected at runtime.  The Sequoia runtime launches threads for all 

available SPUs upon initialization, planting a lightweight event-driven driver on each 

processor.  These threads are kept running for the duration of the application (more on 

why in Chapter 4).  From there, all Sequoia code is dynamically transmitted to the 

SPUs as each task is performed during program execution. 

One of the primary concerns with Sequoia is that it is a solution in the form of 

a new language.  This can be a risky path since it requires developers to decide if the 

benefits presented in the structure and semantics of the language outweigh the time 
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and effort that go along with learning a new language as well as the difficulties 

inherent with porting existing software to use it. 

 

3.3.2 MultiCore Framework 

 The MultiCore Framework (MCF) is an API developed by Mercury Computer 

Systems Inc. for programming n-dimensional matrix computations on heterogeneous 

multi-core processors [Mercury06b; Bouzas06].  It is actually a component of a larger 

product called the MultiCore Plus SDK , which also includes a Scientific Algorithm 

Library (SAL), Trace Analysis Tool and Library (TATL), Image Processing 

Algorithm Library (PixL), and SPE Assembly Development Kit (SPEAD-K) [MCF]. 

MCF is packaged in the form of a library and is built upon the principles of the 

Function-Offload programming model.  Within their Function-Offload Engine (FOE), 

they employ a “strip-mining” technique to partition the dataset (being sure to consider 

all the aforementioned alignment constraints) into SPU-sized chunks called tiles, 

which they can then push through the framework pipeline in parallel [Mercury06a].  In 

other words, tiles serve as the payloads for parallel tasks so that the data can be 

partitioned, processed, and reassembled in an efficient manner. 

At a high level, MCF presents the developer with a manager-worker paradigm, 

called a network.  Upon initialization, the manager (PPU) creates a number of worker 

(SPU) threads, each with a SPU runtime kernel to allow it to participate in the MCF 

network.  Workers can also be grouped into teams during the initialization of the 

program to provide a coherent way of performing different tasks in parallel (as shown 

in Figure 3.1).  After the teams have been established, the manager creates task queues 
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for each team and sends them on their way.  It then follows that team members 

proceed to pop tasks off the queues and process them in parallel.  Giving the client the 

flexibility to organize and designate teams of workers for various data-parallel stages 

within their application is a very nice feature since it provides the option of an 

additional level of task-parallelism within the mechanics of the framework. 

 

Figure 3.1: MultiCore Framework Task-Parallelism via Teams 

 

During execution, the manager communicates with the workers via input and 

output tile channels.  As each task is dispatched to a worker, metadata blocks indicate 

the appropriate tiles to retrieve as input and output buffers for the actual processing.  

While all of the communication handling is performed by the framework, the 

developer still has the responsibility of writing both the manager and worker source 
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code using their respective MCF APIs.  In other words, MCF keeps the developer 

close to the hardware when it comes to performing the raw computation on the data, 

yet provides a convenient interface for partitioning and transferring the data between 

the processors. 

However, one significant disadvantage of this framework is that it is targeted at 

applications looking to solve a specific kind of problem that is most naturally 

expressed as an n-dimensional matrix computation.  While it is true that many 

problems can be broken down into small “tiles” from the original (such as a matrix 

multiply or the application a filter to an image), it may be difficult for some 

developers to formulate the solutions to their problems in this way. 

 

3.3.3 Cell Superscalar 

The Cell Superscalar (CellSs) project is the successor to the groundbreaking 

work explored in the GRID Superscalar environment by the Barcelona 

Supercomputing Center [Bellens06].  The primary goals have been to provide a simple, 

flexible programming model that can still take advantage of the performance benefits 

from a complex architecture like the Cell.  CellSs is built on two principal 

components: the CellSs compiler (CSS) and a runtime library. 

The CellSs compiler is based on the Nanos Mercurium compiler which was 

originally designed for OpenMP [Balart04].  It is a source-to-source translator that 

takes in an annotated C source file and produces a pair of source files, one for each 

Cell processor type (PPU and SPU).  These source files can then be compiled by the 

respective compilers provided in the CellSDK.  This approach enables developers to 
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write sequential code that is automatically parallelized by CSS in a functional manner.  

This approach differs from those previously discussed, which have been based on 

exploiting data-parallelism.  CellSs simply relies on other resources, such as the 

Octopiler [Eichenberger06], to handle data parallelism and instead focuses on 

producing functionally parallel solutions from the sequential source. 

In CellSs, developers add annotations to indicate candidate functions to be 

executed in parallel (on the SPU); however, like the inline keyword, these 

annotations are merely suggestions to the CellSs runtime.  The runtime constructs a 

data dependency graph to schedule independent annotated functions to execute on 

different SPUs in parallel, allowing for adaptive functional parallelism.  If there are 

dependencies found in the currently executing SPU tasks or if there are no free SPUs 

available on the system, then the function will be executed on the PPU allowing for 

the “sequential” application to continue to move forward.  If a task is determined to be 

suitable for SPU execution, the runtime handles all of the data transfer management 

and scheduling. 

In other words, CellSs provides developers with a tool to automatically 

parallelize a sequential application to run on Cell.  While this is a phenomenal result in 

itself, the choices made by and the additional overhead from the runtime dependency 

graph may hinder an application from reaching peak performance.  For example, from 

our own observation, it is frequently the case that when a particular task is run on the 

PPU it is much slower than running one or more similar tasks on the SPUs, which 

indicates that it may actually be faster for the application to simply wait for the SPUs 
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to finish their current task loads and then take on the task in question, rather than 

leaving it to be handled by the PPU. 

 

3.4 Potential of Cell for Scientific Computing 

Finally, we discuss work from the Lawrence Berkeley National Laboratory 

(LBNL) that analyzed the usefulness of the Cell processor in the Scientific Computing 

domain [Williams06].  The authors present a wide range of benchmarks relevant to the 

SC community, comparing Cell with a modified version of Cell (Cell+), and other 

architectures such as the AMD Opteron, Intel Itanium2, and Cray X1E.  Benchmark 

applications included a single- and double-precision general matrix multiply (GEMM), 

single- and double-precision sparse matrix-vector multiply (SpMV), stencil-based 

computations: a heat equation solver [Chombo] and a 3D hyperbolic PDE solver 

[Cactus], and single- and double-precision Fast Fourier Transform (FFT).  In this 

section we will take a brief look at the architectural modifications and discuss some of 

the reported benchmarks. 

 

3.4.1 Architectural Modifications 

One of the main contributions of this paper emphasizes some architectural 

modifications to improve the efficiency of the double-precision hardware 

computations on the Cell without requiring a complete rewrite of the pipeline.  This 

modified architecture is referred to as Cell+.  The modifications include lengthening 

the forwarding network to eliminate all but one of the cycle stalls.  The authors claim 

that this improvement would allow for the chip to execute double-precision operations 
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every other cycle rather than the current 7 cycles (see Section 2.3.1).  Simulated 

results boast that such changes would achieve as much as a 3.5x improvement in 

throughput of the current double-precision operations, without altering the other 

advantages offered by Cell (single-precision throughput, low power consumption, etc.).  

 

3.4.2 Performance Benchmarks 

By exploiting the deterministic environment of the SPU, the LBNL group 

developed a performance model for Cell to predict the total runtime for the 

computational kernels of their applications.  Throughout the paper, this performance 

model is compared to actual runtimes from the Cell System Simulator and is proven to 

be quite accurate even for complex operations.  For instance, when validating their 

model against IBM’s implementation benchmarks for SGEMM, the performance 

model’s prediction was within 2% of the actual measured performance (IBM: 201 

GFlops; LBNL: 204 GFlops) [Williams06]. 

 When juxtaposing their benchmarks for Cell and the aforementioned 

conventional processors, Cell clearly dominates in both single- and double-precision 

implementations.  For example, their performance model estimated that Cell is 10x 

faster than the single-precision sparse matrix-vector multiply on the Itanium2, as well 

as 6x faster for double-precision.  Also, their performance model estimates that Cell is 

more than 60x faster than the single-precision Chombo heat equation solver on the 

Opteron, and almost 13x faster for double-precision. 

 Overall, the benchmarks reported in [Williams06] make a strong case for the 

Cell processor and its significance to the Scientific Computing community. 
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3.5 Analysis and Insight 

Before concluding this chapter, we would like to juxtapose the approaches of 

the aforementioned prior work to help put them into better perspective.  In Figure 3.2 

below, we have provided a chart summarizing the different framework approaches and 

their respective platforms. 

 
Figure 3.2: Framework Platform Comparison Chart 

 
 

3.5.1 Portable Development Solutions 

To begin, if we consider portability as an absolute requirement for application 

development, our choices are narrowed down to PeakStream, RapidMind, and the 

Sequoia programming language. 

Of these three, Sequoia provides the most fine-grain control but also requires 

the largest change in environment as it is a completely different language and 

programming paradigm.  Additionally, Sequoia calls for developers to make 

algorithmic changes to their applications (or design them accordingly) if they are not 

already formulated in a divide and conquer tree pattern. 

On the other hand, both PeakStream and RapidMind support incremental 

development, requiring only an adjustment of data types and code semantics at the 

points of desired parallelization.  Another benefit that PeakStream and RapidMind 



45 

 

have over Sequoia is their portability to more conventional hardware configurations 

such as multi-core CPUs and GPU-assisted architectures, as opposed to PC node 

clusters4 which are normally only available at institutions and centers of research. 

 

3.5.2 Solutions for Cell Development 

Now, if we turn our attention to considering each of these platforms as 

solutions for Cell development (discarding any possible portability requirements), our 

choices include: the Offload API, RapidMind, Sequoia, MultiCore Framework, and 

Cell Superscalar.  We have compiled a chart to compare the parallelism and 

programming paradigms available through these frameworks in Figure 3.3. 

 
Figure 3.3: Framework Parallelism and Paradigm Comparison Chart 

 
 

Firstly, the Offload API is the most limited of the aforementioned solutions 

due to its static code restriction and its one-to-one correspondence between a DMA 

payload and a work request task.  However, the Offload API is available absolutely 

free of charge and the cost of integration is relatively small in comparison to the rest 

of the choices.   Furthermore, the Offload API has no extra cost for dynamic 

compilation or code interpretation through a virtual machine.  Therefore, in essence it 

keeps the developer close to the hardware yet presents a useful and intuitive 

abstraction of the data transfer pipeline. 
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As a Cell development platform, RapidMind still offers the convenience of 

incremental development but is considerably more heavyweight than the Offload API.  

Surely, RapidMind’s strength comes from its architecture-agnostic API, through 

which the developer simply designates which portions of the code should be 

parallelized and permits RapidMind to handle the rest—memory alignment, DMA 

transfers, and even vectorization.  However, this approach presents the developer with 

the complete opposite standpoint of the Offload API’s intimacy with the hardware.  

With RapidMind there is no direct control over what tasks are presently executing in 

the SPUs at any given time—however, it is understandable that such knowledge may 

not be a defining concern for programmers and their applications and therefore may be 

an appropriate trade-off for the ease of development. 

When considering Sequoia as a solution for Cell, the issue of language is still a 

significant concern.  Nevertheless, in terms of its memory model, Sequoia presents a 

straightforward mapping of the memory hierarchy where inner nodes map to the PPU 

and leaf nodes map to the SPU as expected.  This model is available to the 

programmer through the language, making Sequoia a viable prospect for high-

performance computing applications wherein such control is imperative. 

Although the MultiCore Framework has the constraint of predominantly 

catering to n-dimensional matrix computations, the abstractions presented to the 

developer are very intuitive and cover the most involved components to Cell 

application development: data partitioning and payload transfer.  Furthermore, the 

additional support for explicit task-parallelism through the team metaphor is an 

important advantage over its commercial competitors. 
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Similar to RapidMind, Cell Superscalar abstracts away the architecture of the 

Cell and presents the developer with the task of designating which components of the 

program should be run in parallel on the SPUs without the need to write any 

communication or SPU-specific code.  However, as we noted earlier, the additional 

overhead produced from constructing and maintaining the runtime dependency graph 

may hinder an application from reaching peak performance. 

 

3.5.3 Framework Performance 

 In this section, we cite some relevant performance information concerning the 

aforementioned frameworks.  However, we note that results for some of the solutions 

are few (or non-existent), including the Offload API’s contribution to the NAMD 

project [NAMD]. 

 RapidMind boasts that their dynamically compiled code can often outperform 

raw C or hand-tuned assembly code [Du Toit07].  Some of their results include a real-

time Quaternion Julia Set Renderer capable of achieving over 40 frames per second, a 

real-time ray tracer (no exact figures given), and real-time crowd simulation (no exact 

figures given) [RapidMind07b].  These case studies and more (for comparative multi-

core CPU and GPU-assisted examples) can be found on the Case Studies page of their 

corporate website. 

 The Sequoia paper outlines seven different benchmark applications which are 

“competitive with existing implementations of similar algorithms” [Fatahalian06].  

They cite a result of 80.6 GFlops for their matrix multiply on a single Cell processor, 

and 160.7 GFlops when run on both processors on the blade, showing the scalability 
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of throughput.  Furthermore, they report a 5% increase in performance over the 

leading GPU implementation of a fuzzy protein string matching application. 

 Mercury compares algorithm implementations utilizing their MultiCore 

Framework on the Cell against the “best available” implementations (Mercury or third 

party) on other platforms, such as 1.0 GHz Freescale 744x, 2.0 GHz PowerPC 970, 2.4 

GHz Opteron, and 3.6 GHz P4 Xeon, in Algorithm Performance on the Cell 

Broadband Engine Processor [Mercury06a].  For their single-precision 64K Complex 

FFT, Mercury reports that they can achieve 90.8 GFlops of throughput (time between 

completions of successive FFTs while streaming), which is a huge increase over the 

second-ranking 6.07 GFlops by the Xeon (the other platforms clock in at around 3 

GFlops).  In other words, MCF on Cell offers a 15x speedup over the leading general-

purpose processor.  Similar results are cited for their symmetric image filter 

implementations. 

 

3.5.4 Final Thoughts 

In the light of performance reports like “Cell technology offers one to two 

orders-of-magnitude improvement in performance per processor and performance per 

Watt” [Mercury06b], we pose the following question: if Cell is so fast, what is holding 

it back from being fully embraced into more mainstream venues? 

The answer is a matter of software.  Simply put, Cell is not the easiest platform 

to develop for.  Surely, the concepts and hardware details (which will be further 

discussed in Chapter 4) become more natural to programmers over time, but even then 

there still exists the additional layer of managing the flow of data across the cores.  
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Consequently, although the cited gains in performance are impressive, the weighty 

challenges present during software development can deter programmers from 

harnessing this power.  For instance, if it takes a programmer a couple of hours to 

implement an application that takes a day to execute on a conventional processor, but 

takes a week to write the same application that runs in 20 minutes on the Cell, are they 

really saving time?  However, if it is possible to gain even a portion of the 

computational power of the Cell for a fraction of this development time, then wouldn’t 

the answer to our question be a resounding yes?  This is exactly the reasoning behind 

the development of the frameworks and languages discussed in this chapter. 

 

3.6 Summary 

In this chapter, we discussed and compared several approaches to alleviate the 

challenges brought forth in developing applications for multi-core streaming 

architectures like the Cell.  Initially, we examined the Brook programming language 

and the PeakStream Platform, designed to serve as portable solutions for stream 

processing application development on GPU-assisted systems.   

Next, we investigated a simple library for developing applications under the 

Function-Offload programming model in the Offload API.  The Offload API offers a 

straightforward interface, through an abstraction called a work request, to 

automatically handle the underlying details of transferring data to and from the SPUs.  

However, it is constrained by the fact that it cannot be used to transfer data payloads 

during the processing of a work request, which implies that large datasets must be 

serialized and incur additional overhead of duplicated data transfers. 
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Afterwards, we examined the RapidMind Development Platform, a 

commercial solution for developing applications for multi-core, GPU-assisted, and 

Cell architectures while maintaining portability across all three.  RapidMind presents 

an architecture-agnostic interface that allows the programmer to designate which 

portions of code should be parallelized and offloaded to other cores in the system.  

However, RapidMind’s high-level interface does not encourage developers to 

explicitly take control of the data transfer, forcing them to rely upon the internal 

decisions of the library to perform this performance critical step. 

The Sequoia programming language presents the developer with the semantics 

for controlling the flow of data up and down the memory hierarchy.  Sequoia requires 

applications to be implemented in a divide and conquer manner that ultimately forms 

what they refer to as a “tree of memories”.  Each level in this tree represents a level in 

the memory hierarchy.  Furthermore, if a level within the tree does not have a 

corresponding physical memory, then the memory level is virtualized and its contents 

are distributed across the physical memories of its children, allowing programmers to 

design applications towards a particular memory hierarchy without being constrained 

only to architectures with a matching configuration.  However, in order to take 

advantage of this level of control, developers must take on the additional task of 

learning a new language (plus environment setup, etc.), as well as reformulate their 

application to a divide and conquer tree if it does not already adhere to this pattern. 

Next, we discussed the Multi-Core Framework which caters to assisting 

developers implement n-dimensional matrix computations on the Cell.  In addition to 

this data transfer paradigm, MCF is supplemented by a set of companion libraries for 
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performing common operations from the mathematics and scientific disciplines.  As in 

RapidMind, developers are forced to rely upon the internals of the library to employ 

the method of data transfer.  Also, while n-dimensional matrix computations are 

indeed useful, it may seem unnatural for some applications to be restructured and 

implemented in this paradigm. 

The final framework we examined was Cell Superscalar, which takes an 

approach that allows developers to write an annotated single source application that is 

automatically parallelized by their source-to-source compiler in a functional manner 

(as opposed to being data-parallelized).  During execution, the CellSs runtime library 

constructs a dependency graph to choose which functions (suggested by programmer 

annotation in the original source) are suitable to be executed on the SPUs depending 

upon their availability (otherwise the task will be scheduled to execute on the PPU).  

However, the choices made by the runtime may schedule tasks in a suboptimal manner 

by scheduling a task to the PPU rather than waiting for the availability of the SPUs. 

Finally, we concluded this chapter with a discussion of the benchmarks and 

architectural modifications put forth in the “Potential of Cell for Scientific 

Computing” paper, wherein the authors reported several measurements where Cell 

drastically outperformed the best implementations cited on conventional processors.  

The authors also claim that the latency of performing double-precision floating-point 

operations can be improved by lengthening the forwarding network to eliminate all but 

one of the cycle stalls.  In accordance with this observation, their simulated results 

show as much as a 3.5x improvement in throughput when compared with the existing 

Cell hardware. 
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Chapter 3 Notes 

1. PeakStream later stated that they had hoped to extend their reach into other 

domains such as gaming and image processing [Stokes07b]. 

2. PeakStream Inc. was bought by Google less than a year after its official launch 

in mid-September 2006 [Stokes07a]. 

3. Overlays are the mechanism by which code can be dynamically inserted and 

run on the SPU.  They do not require a new SPU thread to be spawned with a 

different SPU binary, and thus save on the SPU thread startup time (see 

Section 4.1).  This transaction of code is managed by an Overlay Manager as 

described in the IBM CellSDK SPU Overlay example. 

4. At the time of this writing, Sequoia only supports the Cell and PC cluster 

platforms.  Multi-core chips were labeled as an item of future work in 

[Fatahalian06] and may be supported in the near future. 
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Chapter 4: Cell Microbenchmarks 
 

In the Fall of 2006, I was given the opportunity to carry out the ground-

breaking work for the gamelab1 on the Cell BladeServer.  During the rest of the 

quarter, I spent a bit of time investigating various aspects of the platform, including 

writing and running a few low-level benchmarks in an effort to help familiarize myself 

with the strengths and weaknesses of the hardware.  It was based on these findings that 

I realized that a lightweight framework library would be an invaluable aid not only to 

the gamelab and the Scalable City project, but to the Cell development community in 

general.  For this reason, we will briefly examine the results of these microbenchmarks 

as well as discuss a few of the lessons learned in order to help motivate some of the 

design decisions for the CAFE framework detailed in the following chapter. 

Before proceeding, we would like to note that all of the results presented in this 

chapter (as well as the rest of the thesis) were measured on the IBM QS20 Cell 

BladeServer at UC San Diego.  Also, unless otherwise specified, all of the reported 

measurements were taken while utilizing only a single Cell processor on one of the 

blades2.  Finally, all of the microbenchmarks presented in this chapter were 

implemented using only the mechanics provided in the CellSDK; i.e. without the 

assistance of any support libraries (CAFE or other).   
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4.1 SPU Threads 

One of the primary concepts to understand in Cell development is that the 

SPUs are treated as a file system in Linux and are accessed via the use of threads.  

Upon the creation of a SPU thread, the following actions take place under the hood: 

1. the system loads the program image into the SPU local store 

2. the program state is initialized 

3. the SPU program is started 

4. the SPU thread ID is returned to the caller 

During this time, the calling thread on the PPU will be blocked until it receives the 

pointer to the thread ID, signaling that the SPU thread is underway. 

SPU threads run to completion, as opposed to being context-switched in and 

out of focus by a scheduler.  This is an important characteristic because it means that 

the program will not be interrupted and has ownership over all of the SPU’s resources 

during normal execution. 

 

4.1.1 SPU Thread Startup Time 

As it turns out, SPU threads can take a considerable amount of time to start up.  

We say “considerable” because when compared to the time it takes to DMA a payload 

to the SPU for processing, the amount of time to spawn a SPU thread is relatively 

large (see Section 4.2.1). 

To overcome the startup overhead of spawning a SPU thread, we need to 

maximize the utilization of the operations made available via that thread.  Thus, it is 

best to keep the SPU binaries resident for as long as possible.  Moreover, considering 
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that SPU threads run to completion, SPU programs should be written in an event-

driven fashion and employ a message-pump paradigm similar to the one outlined in 

Figure 4.1 below.  We will further explore and utilize this event-driven pipeline in 

later chapters. 

 

Figure 4.1: SPU Event-Driven Pipeline Pseudocode 

 

One may recall that we examined a more extreme example that made use of 

these principles implemented in the Offload API (see Section 3.2.1), where only a 

single SPU binary could be used for the application and event signals were used to 

choose different operation routines for data processing.  Similarly, these same 

observations motivated the design of CAFE’s DMA helper routines; however, our 

library does not impose such restrictions.  We will revisit this in the next chapter. 

Next, we will present the results obtained from a microbenchmark for 

analyzing SPU thread startup times to support the previous remarks. 
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4.1.2 SPU Thread Startup Timing Results 

We begin by measuring the time it takes to spawn a SPU thread.  Our 

microbenchmark uses a minimalist SPU program (it simply returns 0), which only 

profiles the time of the call to create the SPU thread (not the complete thread runtime). 
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Figure 4.2: SPU Thread Startup Time for Single Cell Processor 

 

The results in Figure 4.2 above show that it takes roughly half a millisecond to 

create a SPU thread and return the thread ID to the PPU.  Furthermore, we also see 

that this time roughly scales with the thread count in a linear fashion up to the eight 

SPUs on the processor as we might have expected. 
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4.2 DMA Test 

Most certainly, the Cell’s power stems from the utilization of the SPUs for data 

processing.  However, this power is of no value unless the processor can efficiently 

move the data into and out of the SPU local store.  As revealed in Chapter 2, this is 

primarily accomplished via Direct Memory Access provided by the Memory Flow 

Controller.  Since data transfer is such a vital component to Cell application 

development, we believed it was imperative to investigate the performance of DMA 

and pinpoint any particulars or caveats that may exist.  As such, we next explore the 

cost of DMA. 

 

4.2.1 DMA Timings 

 The first issue we would like address is the question of how long it takes to 

ferry a payload between processors.  To answer this question, we implemented a small 

program to measure the time required to transfer data from the PPU to the SPU as well 

as from the SPU to the PPU.  Figure 4.3 below presents the gathered results for 

various payload sizes from 16 KB to 192 KB (at increments of 16 KB) and compares 

the measurements for both directions of transfer.  For this benchmark, we note that all 

of the results presented were collected from a single SPU and no data processing was 

performed on the transferred data.  Also, all of the DMA transfers for both directions 

were invoked by the SPU to ensure that no extra overhead was incurred from any 

extraneous communication between PPU and the MFC on the SPU (see Section 2.4.2).   
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Figure 4.3: DMA Transfer Time between the PPU and SPU 

 

 Figure 4.3 shows the results for DMA transfers between the PPU and SPU in 

both directions.  Take care to note that the times are labeled in milliseconds (as 

opposed to the SPU thread spawn times which were labeled in seconds).  As such, it is 

important to realize that these benchmarks all fall well below the observed SPU thread 

startup time of half a millisecond from Section 4.1.2.  Thus, these results provide the 

appropriate grounding for our previous assertion that spawning a SPU thread is a 

relatively expensive operation.  This implies that it is best to switch out SPU binaries 

as few times as possible during application execution. 

Along these same lines of advice, it should become clearer why the Chaining 

programming model from Section 2.5.2 is such an appealing paradigm for particular 
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applications.  If we can load up different SPU binaries to handle different stages of the 

data processing pipeline, we will rarely, if ever, have to create a new SPU thread after 

initialization.  What’s more, we can save the extra DMA transfers back to PPU which 

would be present in a pure Function-Offload application by sending the data straight to 

the next SPU in the chain.  We examine an example application that employs the 

Chaining paradigm later in Section 6.3. 

Also, an interesting observation is that the DMA time required to send data 

back to the PPU is smaller than the time required for the SPU to receive data from the 

PPU.  This was a peculiar find and we ended up re-running the benchmarks to ensure 

this observation was not simply a result of noise in the timings, yet the timings 

between the two directions stayed true to their original rankings (as shown). 

 

4.2.2 DMA Method Comparison Test 

Now that we have put the time for DMA in perspective, we next explore the 

mechanics of communication further by looking at a couple different methods of 

executing DMA requests. 

First, we could write our communication code such that it is performed 

sequentially (see Figure 4.4a); that is, after each request we can read the tag status to 

ensure that the requested DMA transfer made with the current tag has completed.  In 

other words, we could set up our pipeline to wait for each piece of the data payload to 

arrive before making the next request or moving on to begin the data processing.  This 

is a reasonable manner in which to structure the SPU program’s data transfer stage, 
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especially if data validation is required or there is a need to dynamically change what 

data is to be retrieved based on the results from previous transfers. 

 
Figure 4.4: Synchronous vs. Asynchronous DMA Methods 

 

However, recall that DMA requests can be made asynchronously (see Section 

2.4.2).  This characteristic allows us to handle the transfer of data in a more “rapid-

fire” manner.  Recall that this can be accomplished by sending out all of the requests 

for the data we want to transfer with the same tag.  Thereafter, we can wait on all of 

these requests with a single call to read the tag status (see Figure 4.4b).  This way we 

do not have to stop the request pipeline as we wait on each individual transfer, rather 

we simply have to wait on the group as a whole. 

 It should come as no surprise that the asynchronous method is faster than the 

sequential one.  Figure 4.5 confirms our intuition as it compares the data transfer time 

for both methods across various payload sizes ranging from 16 KB to 192 KB 

(uniformly spaced at intervals of 16 KB).  We chose not to exceed 200 KB as it is 

nearing the capacity of the local store which also must house the code.  
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Figure 4.5: Synchronous vs. Asynchronous DMA Transfer Comparison 

 

The plot above shows a steady increase in the difference between the times of 

the transfer methods while ferrying data from the PPU to the SPU, which is to be 

expected since with each additional 16 KB batch there is a corresponding 

synchronization wait.  In the case of 192 KB, the asynchronous method holds almost a 

7% margin of improvement in performance over the sequential method. 

In accordance with these results, we recommend employing the asynchronous 

transfer method whenever possible.  However, it should be noted that if an application 

happens to require the need for sequential data transfer (i.e. for verification purposes), 

it is comforting to know that the penalty for employing this method is not unbearable. 
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4.2.3 Final Recommendation 

In practice, we recommend making asynchronous DMA requests in batches of 

16 KB in size for transferring large payloads to and from the SPUs.  More formally, 

any payload can be partitioned into two phases: the batch phase and the final phase.  

The batch phase simply dispatches as many 16 KB DMA requests that can fit into the 

total payload size without overflowing (think integer division), while the final phase 

makes a DMA request smaller than 16 KB to retrieve any remaining data in the 

payload after the batches have run their course (think modulus). 

An example of this partitioning technique is shown for a payload size of 60 KB 

in Figure 4.6 below.  In accordance with the technique above, the payload is 

partitioned in the following manner: { 6012163 =+×
finalbatch

321 .  In other words, to fulfill this 

request we should dispatch three batches of 16 KB and a final batch of 12 KB. 

 

Figure 4.6: DMA Transfer Split into Batch Phase and Final Phase 
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This pattern began to appear throughout our application source code so 

frequently that we decided it should be generalized and refactored into a utility 

function.  Hence, this is the method we follow for invoking DMA transfers in our 

framework implementation. 

 

4.3 A Few Words on DMA 

One of the biggest hurdles to tackle when first starting Cell development is the 

aspect of communication through the use of DMA.  This is primarily because there are 

many fine-grained details to pay attention to as a result of the exposed architecture.  

Therefore, we would like to take a closer look at the mechanics of DMA to discuss 

some those details which have chronically been the source of many of our own 

implementation headaches. 

 

4.3.1 Memory Alignment 

First and foremost, it has often been the case that improper memory alignment 

within the data itself is from where most of our own troubles have stemmed.  Aligning 

the data upon allocation is only the first step towards creating a DMA-compliant data 

buffer.  When placing a DMA request, the addresses being submitted must be at least 

16-byte aligned (128-byte aligned for peak performance), otherwise the program will 

render the infamous Bus Error message and abort.  Surely, if the data is simple and 

happens to be granular enough to always split on these alignment boundaries after the 

initial aligned allocation, there is no need for concern.  However, real-world data is 
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usually not this simple and happens to come readily sliced in nice 16-byte aligned 

chunks without undergoing some sort of alternative packing transformation. 

One approach is to pad the data that will be transferred via DMA to be a 

multiple of 16 bytes.  Unfortunately this can be challenging in applications where data 

structures are meticulously packed for the sake of memory and computational 

efficiency.  In such cases, another solution is required; however, it can be the quickest 

and least design-intrusive in cases where these rigid restrictions are not present. 

Another, more robust approach is to rearrange the data.  Surely, if one is doing 

this strictly for the sake of DMA, the reengineering of carefully packed data could be a 

poor solution, yet it does point us in a favorable direction.  As we alluded to earlier, 

the Cell performs very well when processing data parallel operations in a streaming 

fashion.  Thus, if the data can be repacked into a set of stream buffers, the issue of 

alignment is partially alleviated as the substructures in the arrays have become more 

fine-grain and (hopefully!) easier to partition on a 16-byte alignment boundary (see 

Figure 4.7).  Nevertheless, there is still no guarantee that this approach will work with 

every data structure without taking special care. 

Indeed, the conditioning of data for transfer to the SPUs is a difficult problem 

and is undoubtedly best approached on an application-to-application basis.  

Nevertheless, its importance has prompted us to bring the issue to forefront of our 

reader’s attention in hopes to steer them in the right direction.  We also note that our 

framework is inherently partial to the streams method owing to the amenability of 

graphics processing to the decomposition of scene and image data into streams. 
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Figure 4.7: Vertex Packing: Mesh vs. Stream Processing 

 

4.3.2 Data Transfer Size 

 The second issue we wish to address is that of DMA data transfer size.  

Individual DMA transfers are constrained to be no longer that 16 KB.  On the other 

end, the minimum payload for a DMA transfer is 128 bytes.  Then again, what has not 

been emphasized is the requirement for the size of a DMA payload to also be a 

multiple of 128 bytes. 

 In accordance with the first suggestion of resolving the memory alignment 

constraint, all data structures could be padded to be a multiple of 128 bytes in size.  

Fortunately, 16 KB is a multiple of 128 bytes so by solving the alignment requirement 

through padding the structure to be 16 KB aligned, the issue of payload size is 

automatically resolved. 
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However, what about the case of employing the streaming approach for small 

data structures (good examples being either control blocks or metadata structures)?  

Our solution is to perform a “round-up divide” and simply DMA the extra bytes.  

There are a couple of reasons for this.  First off, transferring an extra 1-127 bytes is 

not going to affect performance horrendously; for the most part, most transferred data 

is handled within the batch phase and this extra memory is not as significant as the 

scale of the total payload transfer as a whole.  Secondly, in order to reuse the structure 

after the payload has arrived, a data type cast is required to properly interpret the bits 

as the structure they once were; hence, these extra bits will not affect the integrity of 

the original data provided that the cast is performed at the correct starting address.  

Therefore, we have found that this approach is a viable solution to the matter of 

gathering the appropriate data transfer size. 

 

4.4 Summary 

 In this chapter, we examined some of our early observations in hopes to lay 

down a foundation for some of the design decisions made in our framework discussed 

in the next chapter. 

First, we observed that the startup time for a SPU thread is roughly a half of a 

millisecond.  We also presented benchmarks for data transfers in both directions 

between the PPU and SPU which showed that the cost of DMA is small and 

confirmed that the DMA transfer time for a payload is much smaller than the 

aforementioned SPU startup time.  This led us to the conclusion that it is best to keep 

the SPU programs resident for as long as possible. 
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Afterwards, we established a method of ferrying a payload to and from the 

SPU by designating a pair of stages: the batch phase and the final phase.  The batch 

phase contains DMA transfers of 16 KB in size, while the final phase contains the 

single DMA transaction to transfer the remaining data in the buffer.  Our final 

recommendation for performing data transfers on Cell is to use this dual-phase method 

and invoke the DMA requests asynchronously to wait on the group of requests as a 

whole and avoid any unnecessary waiting. 

Finally, we discussed a few important details concerning the conditioning of a 

dataset for DMA transfer.  In terms of data memory alignment, we first suggested 

additional padding to ensure that arrays of structures remain 16-byte aligned.  We also 

suggested the repacking of structure components into streams, since the breaking of 

the agglomeration into finer-grained components is more likely to be split on 16-byte 

boundaries.  Lastly, we addressed the issue of DMA transfer size and ultimately 

recommended the transfer of the additional data beyond the size of the actual structure 

since it does not affect the integrity of the real data, yet still allows for a DMA-

compliant size for the transfer. 
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Chapter 4 Notes 

1. The Experimental Game Lab (EGL; or just “gamelab”) is one of Professor 

Sheldon Brown’s labs at UCSD, located in the Center for Research in 

Computing and the Arts (CRCA) at the California Institute of 

Telecommunications and Information Technologies (Calit2).  The gamelab is 

geared to the creation of new forms of art that utilize, extend, and connect 

technologies of computer gaming and scientific visualization. 

2. As it turns out, by calling the function to create a SPU thread developers are 

given no guarantee that the thread is going to be created on the same processor 

as the PPU executing the application in a Cell blade environment.  Therefore, 

we ensured that all of our SPU threads are kept local by using the numactl 

command to bind the processors and memory to a single Cell node [Kleen04]. 
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Chapter 5: CAFE: Cell Architecture Framework and Extensions 
 

We now present our framework: Cell Architecture Framework and Extensions 

(CAFE), for developing stream processing applications on the Cell. 

To begin, we will outline the goals and motivations we had set forth for 

ourselves during the preliminary design phase in developing our framework.  We will 

then follow this by a conceptual overview of the structures and mechanisms provided 

by the library and discuss the positive repercussions our design echoes in using the 

framework implementation in our functional tests.  After the mechanics have been 

introduced individually, we present a pair of example programming paradigms and 

pipelines that utilize these mechanisms to show CAFE’s simplicity and versatility for 

general Cell application development.  Additionally, we will walk through both a 

pseudocode template and an example program for each of these programming 

paradigms to give our readers an idea of how the API corresponds to the concepts 

introduced earlier. 

 

5.1 Goals and Motivation 

 Our primary goal in developing CAFE was to create a minimalistic framework 

to assist developers in taking advantage of the computational power provided by the 

Cell’s SPUs without forcing a particular programming model onto their applications.  

For instance, an application may be more naturally or optimally implemented in 

another programming paradigm, such as Chaining, as opposed to the Function-Offload 

model.  In the light of these characteristics, we believe that CAFE is a unique solution 
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to this problem even amongst all of the frameworks and development platforms 

previously presented in Chapter 3. 

 First and foremost, CAFE is lightweight.  We wanted a framework that was 

lean and learnable, so that other programmers would be able to quickly pick up and 

understand the structures and functional mechanics it offered.  This made us very 

cautious about our decisions concerning what we found to be appropriate to include as 

a part of the CAFE library, all while withstanding the temptation to create a “kitchen-

sink” solution, bloated with rarely applicable features.  Therefore, we implemented 

several applications along the way to reconcile which components were absolutely 

necessary to cater to general Cell application development. 

 Second, CAFE is flexible.  We wanted to design a framework that did not take 

over the application structure or flow.  In particular, we wanted to ensure that the 

developer was free to implement their own scheduling routine and use the 

programming model best suited for their application rather than being required to use 

the one provided.  Also, it is possible that an application may further benefit from a 

custom buffering technique over a standard double-buffering implementation.  By 

only offering specific programming models or employing them in particular ways, 

developers may be denied the performance gains and implementation flexibility 

important—or perhaps critical—to their applications.  Thus, we felt it was imperative 

to ensure that our framework offered the same levels of development freedom 

presented by the IBM CellSDK and no less. 

Third, CAFE is non-intrusive.  One of the original requirements for our 

framework was to make it easy to port a sizable legacy code base to the Cell (see 
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Appendix A).  For this reason, CAFE does not require the client’s code base to replace 

its own structures with custom data types in order to properly function.  Instead, we 

decided that an intermediary metadata type was a better solution to the issue.  

Furthermore, CAFE does not require any additional setup (such as a change in 

compiler or development environment), nor does it confine a developer to putting their 

code in particular places while the framework maintains overall control of the 

application.  In other words, we believe that the library code should live in the 

application’s world—not the other way around. 

Finally, CAFE keeps the developer close to the hardware.  CAFE is, by design, 

low-level and without a runtime library (as was the case with many of the 

aforementioned solutions from Chapter 3).  By striving to keep the developer close to 

the hardware, CAFE does not deny the programmer the ability to tune their 

applications in order to achieve the best possible performance.  Also, a predetermined 

runtime library results in the loss of SPU local storage space for unused features on 

not just one, but across all the processors. 

In consequence, these conclusions led us to design our framework to revolve 

around a flexible data-splitting solution with an open-pipeline.  By open-pipeline, we 

mean to say that clients have the option of not being committed to the pipeline of 

ferrying data to and from the SPU for its entirety.  In other words, our data transfer 

pipeline is divided into distinct stages which can either successively run their course or 

be replaced by the developer to suit their own purposes, ultimately presenting clients 

with the freedom to control the data flow and scheduling of the application through the 

use of payload-level abstractions.  Most importantly, this also allows developers to 
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engineer their applications to best fit their own needs without being weighed down by 

the details of the mechanical requirements of the system. 

 

5.2 Framework Mechanics 

 In this section, we will discuss the structures and mechanics featured in our 

framework.  It is our plan to introduce these here at a relatively high level so that the 

concepts are not clouded by the details of their implementation and usage.  We will 

show the lower-level details of using the framework to build Cell applications in the 

next chapter. 

 

5.2.1 MemoryRegion 

CAFE defines a primitive data structure called a MemoryRegion.  The 

MemoryRegion is a clean way to pass around a pointer to data along with its size (in 

bytes).  Primarily, it serves as a wrapper that allows our framework to operate on user-

defined types and data without requiring them to integrate the MemoryRegion as a 

fundamental type into their code.  We like to think of the MemoryRegion as a bridge 

between the developer’s application code and the functionality provided in our 

framework.  In other words, the MemoryRegion is a low-impact data structure, 

meaning that clients still own their data and are not required to package it into finer-

grained data types for the library’s convenience.  This attribute of non-ownership is 

also why we refer to the MemoryRegion as metadata type, since it only holds higher-

level information about some other actual data that it does not physically own. 



73 

 

In a way, the MemoryRegion is CAFE’s version of a stream or array structure 

from the other solutions presented in Chapter 3, though it does not actually hold the 

data itself.  To be absolutely clear, the memory that the MemoryRegion wraps is 

volatile, which means that it is the client’s responsibility to ensure that the integrity of 

this data is not compromised (i.e. accidentally modified or freed) during its use.  We 

believe that this attribute of non-ownership is more empowering than troublesome 

since it allows the framework to operate without duplicating the entire dataset, which 

could be a very expensive operation in terms of both time and memory. 

 

5.2.2 CafeJobs and Data-Partitioning 

CAFE is built upon the foundation of developing task-oriented applications.  In 

CAFE these tasks are called jobs.  A job is a unit of work performed on the SPU for a 

given payload.  This payload normally comes from a larger dataset that must be 

partitioned into a number of individual SPU-sized chunks.  Partitioning the original 

dataset is a necessary yet error-prone chore required for all non-trivial Cell 

applications (recall the numerous constraints outlined in Section 4.3).  As a result, we 

implemented and thoroughly tested a general data-partitioning routine encapsulated in 

what we call the CafeJobSplitter. 

The high-level goal behind CAFE’s data-partitioning strategy is to exchange a 

large dataset for a queue of SPU-sized payloads, called CafeJobs (see Figure 5.1).  

Each CafeJob is defined as a contiguous section of some data that can fit within a 

user-defined size value no larger than the available memory on the SPU1.  Like the 

MemoryRegion, the CafeJob is a metadata structure that actually only holds 
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information about where in the original dataset it starts and ends, as well as the 

number of chunks (16 KB or less) that are required to DMA the CafeJob from one 

processor to another in its entirety.  However, also like the MemoryRegion, this means 

that the integrity of the original data buffer must remain pure throughout its usage 

during the related CafeJob execution; upholding this guarantee is the responsibility of 

the programmer since it makes little sense for the library to assume ownership of the 

client’s data for the sake of communication.   

Figure 5.1 depicts the process of generating the CafeJobQueue.  It starts with 

the client’s data wrapped in a MemoryRegion which is passed to the CafeJobSplitter 

which then performs the partitioning of the data (by reference) into CafeJobs.  

 

Figure 5.1: CAFE Data-Partitioning Pipeline: Generating the CafeJobQueue 
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Another benefit that stems from non-ownership of the data is that of reuse.  As 

long as the data is not moved in memory or freed, the CafeJobs that point to it are still 

valid, and thus the CafeJobQueue may be reused for subsequent tasks, potentially 

saving on additional partitionings for the same data.  Furthermore, in the case when 

the input and output buffers of the CafeJob are the same size, non-ownership also 

allows developers to reuse the memory of the input buffer as the output, producing the 

effect of a direct modification of the input data. 

Above all else, we chose this simple representation because it gives developers 

the freedom to choose how to ferry their data to and from the SPU.  If the data is 

already packaged into a single buffer, the developer may only need one job queue with 

a maximum CafeJob size approximately equal to: 256 KB minus the size of the SPU 

binary2.  What’s more, the developer may need to pull data from different buffers 

simultaneously to perform the task computations (recall the scenario presented in the 

stream processing packing from Figure 4.7); thus, in the same manner, it is easy to 

compute a partitioning of the available space that may be used by each of these buffers 

by simply dividing this maximum CafeJob size by the buffer count.  Furthermore, the 

programmer is also given the freedom to choose when they want to initialize and 

dispatch their CafeJobs; i.e. some may want to precompute their CafeJobs and fire 

them off at a later time within their program, while others may need to fire them off in 

sporadic batches, etc. 

However, we have overlooked an important detail: objects inside of data 

buffers are not always DMA-compliant (as was indicated in the final notes on DMA at 

the end of Chapter 4).  In other words, while it is generally the case that buffers are 
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created to be aligned on a 16- or 128-byte boundary, the objects inside are not 

guaranteed to follow in lockstep.  This becomes a problem when more than one 

CafeJob must be created to cover the size of the buffer... where do we start this next 

CafeJob?  After all, we do not want to end up transferring half of an object at the tail 

end of one CafeJob and the latter half at the beginning of the next CafeJob—the 

results would be disastrous!  Hence, CafeJobs come equipped with pointers to both 

the start of the data to DMA (properly aligned) and the start of the actual user data 

(may or may not be aligned)3.  This is possible because in addition to requiring a 

maximum CafeJob size, our splitter also requires a stride, representative of the size of 

the object type contained within the buffer4. 

Internally, the CafeJobSplitter uses the stride to ensure that no structure 

within the buffer straddles a partition.  For example, if the max CafeJob size was set 

at 50 KB and we had a buffer filled with four objects each 15 KB in size, we would 

not want the CafeJobSplitter to create two jobs where one is the full 50 KB and the 

other is the remaining 10 KB since it splits the final object between the two jobs.  A 

correct partitioning may be found by using the stride to help guide the split locations; 

using a stride of 15 KB, the CafeJobSplitter will create two jobs where the first 

contains three of the objects (a total of 45 KB) while the other is the remaining object 

(a total of 15 KB).  Here we note that while this result is in fact a correct partitioning, 

it not load-balanced.  Due to the fact that we wanted the developer to have the 

opportunity to create and utilize multiple CafeJobQueues to serve as the input buffers 

for a single SPU task, the CafeJobSplitter does not attempt to load-balance the data 

within the CafeJobs. 
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5.2.3 DMA Manager 

Once the data has passed through the data splitter and the CafeJobQueue(s) 

have been established, the data is ready for transfer.  At this point, the client may ferry 

the jobs to and from the SPU themselves using the mechanisms already provided by 

the CellSDK, or they can use the CafeJobDmaManager.  This is one of those distinct 

points in our pipeline where the developer can choose whether they want to use the 

provisions of the framework or substitute in their own implementation. 

In the case of the CafeJobDmaManager, DMA requests are invoked from the 

SPUs to transfer over the entire CafeJob, placing them in a buffer (designated by a 

MemoryRegion) as they arrive.  To accommodate multi-buffering, the DMA requests 

are made in one call and a final tag sync (see Section 4.2.2) is made in a subsequent 

one.  This allows for data transfers to be layered behind data processing in a simple 

and intuitive manner.  Also, inside the CafeJobDmaManager, we employ the batch and 

final phase method introduced in Section 4.2.2 when dispatching the DMA requests. 

If the developer knows that the scheduling of their data should be performed in 

manner other than the batch and final phase method to better meet the needs of their 

application, then they may implement their own data transfer scheduler for the DMA 

pipeline, yet still take advantage of the aforementioned job partitioning functionality.  

The structure of a CafeJob provides sufficient information for the developer to 

properly DMA the chunks (16 KB or less) and ascertain where the actual data begins 

and ends.  Therefore, with this information it is possible to write a custom DMA 

scheduler to transfer CafeJobs to and from the SPU if so desired. 
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5.3 Programming Paradigms Using CAFE 

At this point, we would like to present a pair of exemplary programming 

models that utilize the aforementioned structures and functionality provided by the 

CAFE library.  For each model, we will provide a high-level overview, accompanied 

by a pseudocode implementation, and discuss its respective strengths and caveats. 

 

5.3.1 Batch-Sync Programming Model 

Recall from Chapter 4 when we found that in order to achieve optimal 

performance it is best to leave the SPU threads running with the same binary for as 

long as possible.  Additionally, we determined that streaming data on a small scale can 

be expensive.  Therefore, in an effort to find a suitable solution, we decided to stream 

our data at the job level, which led us to the following paradigm. 

The Batch-Sync programming model is an event-driven paradigm in which 

individual jobs are deployed to the SPUs one batch at a time in a purely Function-

Offload manner.  In this method, the PPU is explicitly responsible for managing the 

workload for each SPU by maintaining the state of the coprocessors as they make their 

way through the CafeJobQueue.  In other words, the PPU must determine how many 

CafeJobs are left in the corresponding CafeJobQueue and how many of those jobs 

can be issued to the available SPUs.  We call this resultant set of CafeJobs which are 

all sent out simultaneously a batch.  Although in Figure 5.2 (below) we show a batch 

of eight, it should be clear that a batch may be composed of any number of CafeJobs 

depending upon the number of SPUs the client wishes to dedicate to processing.  To 
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be sure, CAFE allows clients the freedom to run several different batches 

simultaneously, even across the SPUs of multiple Cell processors. 

 
Figure 5.2: Batch-Sync Programming Model Pipeline 

 

Moreover, it is important to make the following observation: between the time 

we dispatch a batch of CafeJobs to the SPUs and the time we receive their completion 

signal, the PPU is free to perform other work.  Consequently, we have allowed for the 

client to split the scheduler into two distinct components: one to deploy a batch of 

CafeJobs and the other to wait on their completion.  This way the client is free to use 

the PPU while the SPUs are processing. 
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To clarify, when we say “wait on a SPU completion signal” we do not mean in 

terms of the spe_wait() function which actually waits on the return status from the 

SPU main().  In our case, we are simply polling the out mailbox of each SPU for a 

completion message.  Once the mailbox is filled, we can read it and ensure our 

CafeJob was completed successfully, otherwise we should abort or handle the error 

somehow (this is dependent upon the client and application).  Then, once all of the 

current jobs have reported in successfully we can start up a new batch. 

Meanwhile, on the other side of the pipeline each SPU waits until it receives an 

event message via mailbox to proceed or terminate (we refer to these events as 

CONTINUE and QUIT, respectively).  If signaled to proceed, the SPU retrieves a control 

block for a single job payload, carries out the necessary processing for that payload, 

and returns to the state of waiting on the PPU for its next task. 

 

Batch-Sync Template 

To better clarify the underlying details, we have provided pseudocode for both 

the PPU and SPU sides of the Batch-Sync method on the next page.  Furthermore, we 

note that we will discuss a concrete example of this programming model in the first 

application presented in Chapter 6 in hopes to help the reader draw parallels between 

the conceptual paradigm and an actual implementation. 

Also, in this template we have assumed that the SPU only has code for a single 

task.  However, this model can easily be converted to apply to a SPU program that 

encapsulates multiple tasks by changing the CONTINUE message to be a task-specific 

continue message (i.e. CONTINUE_TASK1, etc.).  CAFE does not force the developer to 
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use any particular scheme in this area of application design, so they are free to 

structure this message pump in any way that best suits the needs of the application. 

 
PPU Steps: 
 

1) Wrap dataset with MemoryRegion 

2) Create CafeJobQueue with MemoryRegion and the max CafeJob size allowed 

3) Create SPU threads 

4) Loop over jobs: 

a. Prepare batch of jobs, where the number of jobs in a single batch is 
found by the following formula: 

( )queueinjobsremainingountspuThreadCbatchSize     ,min=  
 

b. For each job in the batch: 
i. Send CONTINUE message (via mailbox) 

ii. Send CafeJob address (via mailbox) 
 

c. Do whatever on PPU while jobs are running 
 
d. For each job in the batch: 

i. Poll the SPU out mailbox until signaled it has been filled 
ii. Read out mailbox and check completion signal 

 
 

5) Loop over SPU threads: 

a. Send END message (via mailbox) 
b. Wait on thread final status 

 

SPU Steps: 
 

1) Loop while message is CONTINUE 

a. Read in CafeJob address 

b. Retrieve CafeJob payload (via DMA) from PPU 

c. Perform data processing 

d. Send back processing results (via DMA) to PPU 

e. Send CafeJob completion signal 
 

2) Terminate SPU thread 
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To summarize, first we must generate the CafeJobQueue from the dataset.  Steps 1 

and 2 accomplish this by first wrapping the dataset in a MemoryRegion and then (as 

depicted in Figure 5.1) partitions the data into SPU-sized chunks via the 

CafeJobSplitter.  The output of the splitter is the desired CafeJobQueue.  Next, we 

spawn the SPU threads (if they have not already been created) in Step 3. 

Step 4 encompasses the heart of the Batch-Sync model’s DMA pipeline.  Here 

we loop over the CafeJobs in the CafeJobQueue and dispatch the aforementioned 

batches, whose size is computed by the formula given in Step 4a.  By “dispatch” we 

actually only need to send the SPU a pair of messages: 

1)   a CONTINUE event message notifying the SPU that it has a task to process, 

2)   the address to the CafeJob so that the SPU can retrieve the input buffer. 

It should be noted that while our outline demonstrates the use of only a single 

CafeJobQueue (and therefore uses only one input buffer), it is possible to use multiple 

queues to provide multiple input buffers for the same task.  For example, if we had 

multiple input streams as in the scenario exemplified in Figure 4.7, it would be 

convenient to create three separate CafeJobQueues, one for each component buffer, 

and then the address for one CafeJob from each queue would have to be dispatched at 

this time (Step 4b). 

At this point (Step 4c), the PPU is free to perform any other tasks as it waits 

for this batch of CafeJobs to complete. 

Finally, we need to collect the completion signals from the SPU mailboxes 

which tell us that the CafeJobs have been processed and the SPUs have gone back to 

waiting for the next event signal (Step 4d). 



83 

 

When the jobs in the CafeJobQueue have been exhausted, we can clean up the 

SPU threads.  This is accomplished by sending a QUIT event message to the SPUs 

which forces them to break from their idle waiting and return a final status. 

On the SPU side, things are a bit simpler.  First, we establish the message 

pump by looping on a CONTINUE signal from the PPU.  If a CONTINUE signal is given, 

then we must retrieve the address to the CafeJob and transfer the data payload.  It is 

here that we use the CafeJobDmaManager or employ a custom method of data transfer.  

Next, we perform the data processing and send back the results (which can also be 

done via the CafeJobDmaManager).  The final step is to send a completion signal and 

go back to waiting for the next event message.  When the PPU sends a QUIT message, 

we simply clean up and return the appropriate exit code. 

 

Batch-Sync Code Sample 

Next we provide code example that follows the pseudocode template above.   

 
PPU Example Code: 

// Givens: 
const int kMaxCafeJobSizeInBytes;  // available space on SPU 
const int kElementCount;   // float vector size 
const int kSpuCount;    // number of SPUs to use 
 
//------------------------------------- 
 
// allocate data buffer 
const int kBufferSizeInBytes = kElementCount * sizeof(float); 
float* dataBuffer = (float*)aligned_malloc(kBufferSizeInBytes, 128); 
 
// fill data buffer here ... 
 
// create CafeJobQueue 
MemoryRegion memRegion(dataBuffer, kBufferSizeInBytes); 
CafeJobQueue* jobQueue = GenerateJobQueue(memRegion,  

kMaxCafeJobSizeInBytes, sizeof(float)); 
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// spawn SPU threads 
speid_t* speids = new speid_t[kSpuCount]; 
for(int spuIdx = 0; spuIdx < kSpuCount; ++spuIdx) 
   speids[spuIdx] = spe_create_thread(0, &SpuProgram, 0, 0, -1, 0); 
 
 
// Batch-Sync pipeline 
const int kJobCount = jobQueue>GetJobCount(); 
for(int jobIdx = 0; jobIdx < kJobCount; ) 
{ 
   // compute batch job count 
   const int batchJobCount = Min(kSpuCount, kJobCount-jobIdx); 
 
 
   // send jobs in batch 
   for(int batchJobIdx = 0; batchJobIdx < batchJobCount; 
++batchJobIdx) 
   { 
      // send continue 
      spe_write_in_mbox(speids[batchJobIdx], (unsigned int)CONTINUE); 
 
      // send CafeJob address 
      spe_write_in_mbox(speids[batchJobIdx], 
          (unsigned int)&jobQueue->mJobs[jobIdx]); 
 
      ++jobIdx; 
   } 
 
 
   // PPU free to do work here ... 
 
   // wait for jobs in batch to finish 
   for(int batchJobIdx = 0; batchJobIdx < batchJobCount; 
++batchJobIdx) 
   { 
      while(!spe_stat_out_mbox(speids[batchJobIdx])); 
      spe_read_out_mbox(speids[batchJobIdx]); 
   } 
} 
 
 
// tell SPUs to finish 
for(int spuIdx = 0; spuIdx < kSpuCount; ++spuIdx) 
{ 
    spe_write_in_mbox(speids[spuIdx], (unsigned int)QUIT); 
 
    int status; 
    spe_wait(speids[spuIdx], &status, 0); 
} 
 
 
// cleanup 
delete [] speids; 
aligned_free(dataBuffer); 
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SPU Example Code: 

Givens: 
const int kDmaTag; 
const int kJobCompletionTag; 
byte dataBuffer[MAXBUF]; // where MAXBUF is some max buffer size 
 
//------------------------------------- 
 
CafeJob cafeJob; 
 
while(spu_read_in_mbox() == CONTINUE) 
{ 
   // retrieve CafeJob metadata 
   unsigned int ppuCafeJobAddr = spu_read_in_mbox(); 
 
   // retrieve CafeJob 
   CafeJobDmaHelpers::DmaCafeJobFromPpu(cafeJob, ppuCafeJobAddr, 
kDmaTag); 
 
   // retrieve data buffer from PPU 
   const int dataBufferSizeInBytes = cafeJob->GetElementCount() * 
sizeof(float); 
   MemoryRegion memRegion(dataBuffer, dataBufferSizeInBytes); 
   CafeJobDmaHelpers::InitiateDmaFromPpu(memRegion, cafeJob, 
kDmaTag); 
   CafeJobDmaHelpers::FinalizeDmaFromPpu(kDmaTag); 
 
 
   // data processing here ... 
 
 
   // send results back to PPU 
   CafeJobDmaHelpers::InitiateDmaToPpu(memRegion, cafeJob, kDmaTag); 
   CafeJobDmaHelpers::FinalizeDmaToPpu(kDmaTag); 
 
   // notify PPU we finished this CafeJob 
   spu_write_out_mbox(kJobCompletionTag); 
} 

 

On the PPU, we first allocate and fill our data buffer.  In this case, we are 

creating a dataset of floats, aligned to a 128-byte boundary.  Certainly these lines 

could be swapped out for loading the dataset from disk, etc. After the dataset has been 

prepared, we must wrap it in a MemoryRegion so that the CAFE data-partitioning 

routines can split the dataset into SPU-sized payloads via the 

CafeJobQueueGenerator::Generate() routine.  Now we have a CafeJobQueue. 
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Next, we must spawn the SPU threads and begin processing the CafeJobs of 

the CafeJobQueue in batches (which we have labeled as the “Batch-Sync pipeline”).  

First, we compute the size of the batch by finding the minimum of the number of SPU 

threads and the remaining jobs (as per the formula given in the template).  Each job is 

dispatched via a pair of mailbox messages; we note that the address of the job is 

readily accessible via the CafeJobQueue member mJobs. 

When the SPU threads have finished, they will send out a completion message 

to the PPU that must be read.  We have done this by looping over the jobs from the 

batch and continually polling the out-mailbox for each SPU; spe_stat_out_mbox() 

will return true when the out-bound mailbox has been filled, allowing us to read the 

completion message.  While we have not done so here, the completion message may 

be checked to ensure the SPU processing completed successfully—the details to this 

check remain application-specific.  Once the entire batch has completed we repeat the 

pipeline steps until all of the CafeJobs in the queue have been processed. 

The final PPU step is to clean up the SPU threads and data buffer memory.  

Since the SPUs are still waiting for a message from the message pump, we must tell 

them to quit and then wait on their return code via the spe_wait() function. 

On the SPU, the message pump is simulated by a while loop whose condition 

is to check whether the next message is to continue.  This corresponds to the first 

mailbox message sent in the batch loop.  Inside this loop, we must first obtain the 

address to the CafeJob, so that we may DMA the CafeJob to the SPU via the 

CafeJobDmaHelpers::DmaCafeJobFromPpu() routine.  This routine fills the CafeJob 

structure passed in using the given kDmaTag. 
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Now that we have a CafeJob we can retrieve the payload it represents via the 

CafeJobDmaHelpers::InitiateDmaFromPpu() routine, which makes all of the DMA 

requests for all of the chunks of data that make up the payload and places them in the 

data buffer wrapped by the given MemoryRegion.  We follow this with a call to 

CafeJobDmaHelpers::FinalizeDmaFromPpu(), which executes the wait on the 

DMA tag used during the requests; it should be noted that double-buffering may be 

employed by interleaving the data processing between the initiate and finalize routines.  

Once the finalize routine returns, the entire payload has been transferred to the SPU. 

Once the data has been processed, we can transfer the payload back to the PPU 

in a manner similar to which it came.  We note that we are assuming that the same 

payload is stores the results, though this is not a requirement; if a different buffer that 

was not previously transferred from the PPU is used to store the results, then a 

separate MemoryRegion and CafeJob must be created. 

The final step is to send the completion message, signaling the PPU that we 

have finished processing this CafeJob payload.  Again, this message may be 

customized for error-handling purposes. 

Before concluding this subsection, we would like to point out that by following 

the Batch-Sync model we are actually still imposing a level of serialization by moving 

down the CafeJobQueue one batch at a time.  This could be improved further by 

immediately sending out a new job once a SPU has completed its current one, but this 

has the disadvantage that now the PPU must be burdened with responding to these 

signals continually instead of at given increments.  Our solution to this problem is 
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presented in the next section on the second programming paradigm which we call 

Subqueue Streaming. 

 

5.3.2 Subqueue Streaming Programming Model 

 The Subqueue Streaming programming model eliminates the aforementioned 

level of serialization that is imposed by stepping through the job queue at the rate of a 

single batch at a time.  Subqueue Streaming (or sometimes just “Streaming”) pushes 

the responsibility of job retrieval onto the SPUs as opposed to leaving it on the 

shoulders of the PPU as in the Batch-Sync approach. 

However, without a coherent manager to oversee the distribution of tasks, an 

important question emerges: how do the SPUs know which jobs in the job queue are 

theirs to process?  The key is to realize that if we partition the entire CafeJobQueue 

into k  contiguous subqueues, then all we have to do is send off the first CafeJob in 

each subqueue to a corresponding SPU and inform it of the number of jobs it is 

responsible for in its designated subqueue.  This works because the SPU can infer 

where to find each next job in its subqueue since all of the CafeJobs in the original 

queue were created in a contiguous block of memory, allowing us to find each next 

job through the use of some pointer arithmetic. 

In fact, we found that this operation of partitioning CafeJobQueues into a 

given number of subqueues is a very useful pattern to employ in general.  Therefore, 

our framework includes a helper routine to partition any CafeJobQueue into k  

subqueues according to a block cyclic distribution.  In the case that the number of 

CafeJobs in the original queue does not divide evenly into k  subqueues, we simply 
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stack the earlier subqueues higher.  For example, if our original job queue is of length 

18 and we wanted to partition it amongst 8=k  SPUs, then each subqueue would be 

assigned 2 jobs with the exception of the initial two, which would be assigned 3 jobs 

each.  Therefore our subqueue sizes would be: { }22222233 . 

 

Figure 5.3: CafeJobQueue Partitioning into Subqueues 

 

It is important to note that when using the CafeJobQueue partitioning routine, 

the subqueues returned (also of type CafeJobQueue) do not have ownership of the 

jobs they point to, as indicated by the diagram in Figure 5.3.  Instead, they merely 

point to a contiguous sequence of CafeJobs that were originally allocated by the initial 

CafeJobQueue.  The idea behind this is that the initial CafeJobQueue was created 

from a buffer that may need to be partitioned into different SPU groupings; i.e.: the 

first partitioning may be for all 8 SPUs while the next time it may only need to be 

partitioned for 4.  This was one of many solutions, but at the end of the day provided 

the client with the most flexibility.  The only caveat is that the developer must take 

care not to delete the original job queue as it will also free all the jobs it contains, thus 

nullifying the subqueues pointing to them. 
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To be absolutely clear, the primary benefit to not owning the CafeJobs for the 

subqueues is that the original CafeJobQueue can be reused for subsequent tasks.  

Since it is possible for different tasks to exploit different levels of parallelism within 

an application, we believed it to be important to allow developers to have this freedom 

to group tasks differently via subqueues.  

 

Subqueue Streaming Template 

We now present a pseudocode template for the Subqueue Streaming method.  

Also, a concrete implementation of this paradigm will be discussed alongside the 

Batch-Sync model in the following chapter. 

 
PPU Steps: 
 

1) Wrap dataset with MemoryRegion 

2) Create CafeJobQueue with MemoryRegion and the max CafeJob size allowed 

3) Create CafeJobQueue subqueues with the subqueue splitter routine 

4) Create SPU threads 

5) Loop over SPU threads: 

a. Send CafeJob address (via mailbox) of first job of designated subqueue  

b. Send count of jobs in designated subqueue 
 

6) Do whatever on PPU while jobs are running 

7) Loop over SPU threads: 

a. Wait on thread final status 
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SPU Steps: 
 

1) Read in CafeJob address 

2) Read in job count 

3) Loop over jobs of subqueue: 

a. Retrieve CafeJob payload (via DMA) from PPU 

b. Perform data processing 

c. Send back processing results (via DMA) to PPU 

d. Compute next job offset 

4) Terminate SPU thread 

 

As in the Batch-Sync model, the first task is to generate the CafeJobQueue 

from the dataset; as such, Steps 1 and 2 are identical to the Batch-Sync template.  Next, 

we must establish the subqueues for each SPU from this CafeJobQueue (Step 3).  Step 

4 spawns the SPU threads (if they have not already been created). 

Steps 5 through 7 encompass the core of the Subqueue Streaming model.  

Notice that these steps are simplified from the corresponding steps in the Batch-Sync 

template.  This is most certainly because the PPU is no longer the administrator of 

CafeJobs to the SPUs.  Step 5 dispatches the subqueues to the SPUs by sending the 

initial CafeJobs in the subqueues and the subqueue size.  At this point, the PPU is free 

to perform any other work in parallel with the SPU tasks.  Finally, we must collect the 

return codes from the SPU threads when the subqueue tasks have completed. 

One of the main differences on the SPU side is that we no longer have to setup 

a message pump to receive event signals.  The message pump was necessary because 

the SPU was not aware of which jobs from the CafeJobQueue it should process.  



92 

 

Instead, it was fed jobs on an as needed basis.  As a result, the Streaming Subqueue 

SPU template looks quite different from the Batch-Sync version. 

First, the SPU must retrieve the subqueue data dispatched by the PPU (as 

outlined in Steps 1 and 2).  Afterwards, we have enough information to loop over and 

process the CafeJobs in this SPU’s designated subqueue.  The inside of this loop 

looks similar to the Batch-Sync version with the exception of the final step which is to 

compute the offset of the next CafeJob in the subqueue rather than signal the PPU that 

the job has been processed.  Then, finally after all of the CafeJobs in the subqueue 

have been processed we can clean up and return the thread exit code. 

 

Subqueue Streaming Code Sample 

Next, we provide code example using the CAFE API that follows the 

pseudocode template above. 

 
PPU Example Code: 

// Givens: 
const int kMaxCafeJobSizeInBytes;  // available space on SPU 
const int kElementCount;   // float vector size 
const int kSpuCount;    // number of SPUs to use 
 
//------------------------------------- 
 
// allocate data buffer 
const int kBufferSizeInBytes = kElementCount * sizeof(float); 
float* dataBuffer = (float*)aligned_malloc(kBufferSizeInBytes, 128); 
 
// fill data buffer here ... 
 
// create CafeJobQueue 
MemoryRegion memRegion(dataBuffer, kBufferSizeInBytes); 
CafeJobQueue* jobQueue = GenerateJobQueue(memRegion,  
   kMaxCafeJobSizeInBytes, sizeof(float)); 
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// create subqueues 
CafeJobQueue* jobSubqueues = new CafeJobQueue[kSpuCount]; 
jobQueue->PartitionIntoSubqueues(jobSubqueues, kSpuCount); 
 
 
// spawn SPU threads 
speid_t* speids = new speid_t[kSpuCount]; 
for(int spuIdx = 0; spuIdx < kSpuCount; ++spuIdx) 
   speids[spuIdx] = spe_create_thread(0, &SpuProgram, 0, 0, -1, 0); 
 
 
// Subqueue Streaming pipeline 
for(int spuIdx = 0; spuIdx < kSpuCount; ++spuIdx) 
{ 
   // send subqueue info 
 
   // subqueue job count 
   spe_write_in_mbox(speids[batchJobIdx],  
      jobSubqueues[spuIdx].GetJobCount()); 
 
   // address of first job in subqueue 
   spe_write_in_mbox(speids[batchJobIdx], 
      (unsigned int)&jobQueue->mJobs[jobIdx]); 
} 
 
 
// PPU free to do work here ... 
 
 
// tell SPUs to finish 
for(int spuIdx = 0; spuIdx < kSpuCount; ++spuIdx) 
{ 
   int status; 
   spe_wait(speids[spuIdx], &status, 0); 
} 
 
 
// cleanup 
delete [] speids; 
delete [] jobSubqueues; 
aligned_free(dataBuffer); 
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SPU Example Code: 

Givens: 
const int kDmaTag; 
byte dataBuffer[MAXBUF]; // where MAXBUF is some max buffer size 
 
//------------------------------------- 
 
CafeJob cafeJob; 
 
// retrieve subqueue metadata 
const unsigned int kJobCount = spu_read_in_mbox(); 
const unsigned int ppuCafeJobAddr = spu_read_in_mbox(); 
 
 
int offsetInBytes = 0; 
for(int jobIdx = 0; jobIdx < kJobCount; ++jobIdx) 
{ 
   // retrieve CafeJob 
   CafeJobDmaHelpers::DmaCafeJobFromPpu(cafeJob, 
      ppuCafeJobAddr + offsetInBytes, kDmaTag); 
 
 
   // retrieve data buffer from PPU 
   const int dataBufferSizeInBytes = cafeJob->GetElementCount() * 
sizeof(float); 
   MemoryRegion memRegion(dataBuffer, dataBufferSizeInBytes); 
   CafeJobDmaHelpers::InitiateDmaFromPpu(memRegion, cafeJob, 
kDmaTag); 
   CafeJobDmaHelpers::FinalizeDmaFromPpu(kDmaTag); 
 
 
   // data processing here ... 
 
 
   // send results back to PPU 
   CafeJobDmaHelpers::InitiateDmaToPpu(memRegion, cafeJob, kDmaTag); 
   CafeJobDmaHelpers::FinalizeDmaToPpu(kDmaTag); 
 
   offsetInBytes += sizeof(cafe::WarpJob); 
} 
 

The code for the Subqueue Streaming implementation proceeds by creating 

CafeJobQueue from data buffer wrapped by a MemoryRegion.  Next, we must create a 

list of CafeJobQueues (in the code: jobSubqueues) to serve as the storage for the 

subqueues.  This list is passed to the PartitionIntoSubqueues() routine along with 

the number of SPU threads (which is the number of subqueues we want to generate).   
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Next, we spawn the SPU threads and begin the Subqueue Streaming pipeline.  

For each SPU, we send out the number of CafeJobs in the corresponding subqueue in 

addition to the address to the first CafeJob in the subqueue.  There is no particular 

ordering to this data, just so long as it matches with the receiving calls in the SPU 

code.  At this point, the SPUs are cranking on all of the jobs in the subqueue so the 

PPU is free to perform other tasks in the meantime. 

At last, we must check the return codes from each of the SPU threads.  Recall 

that the SPU programs in the Subqueue Streaming model run to completion once 

dispatched with a subqueue, so there is no need to wait on a completion message here.  

Finally, we must clean up the memory used (be sure to include the subqueue list!). 

On the SPU, we wait for the PPU to send the subqueue metadata: the number 

of CafeJobs this SPU is responsible for processing and the address to the first job in 

our subqueue.  While looping over the jobs in our subqueue, we must keep an offset 

from the address of the first CafeJob, so that we can proceed through the queue 

without explicitly asking the PPU for this information.  We use this offset when we 

call the CafeJobDmaHelpers::DmaCafeJobFromPpu() routine to retrieve the 

CafeJob from the PPU and fill the cafeJob structure. 

With this CafeJob, we can now retrieve the data payload via the initiate and 

finalize DMA routines.  As before, double-buffering may be employed by interleaving 

computation between these calls.  Finally, when we have finished processing we must 

send our results back (again, assumed to be stored in the same buffer as the input data).  

After the results have been sent, we increment our job offset so we can retrieve the 

next CafeJob in the queue. 
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As one might suspect, the SPU-driven job management approach featured in 

the Subqueue Streaming model outperforms the PPU-supervised scheme utilized by 

the Batch-Sync pipeline (see Section 6.1.3).  Despite this difference, we have still 

found important uses for the Batch-Sync programming model, namely when the jobs 

are not guaranteed to be processed in a uniform manner since we have the opportunity 

to disrupt and dynamically adjust the state of the overall task according to the results 

received.  This is not possible with the Streaming method—once the SPUs have been 

dispatched with their subqueues they are committed to processing those jobs. 

 

5.4 Summary 

In this chapter, we introduced the Cell Architecture Framework and Extensions 

(CAFE) library: a minimalistic framework designed to assist developers in taking 

advantage of the computational power provided by the Cell’s SPUs without forcing a 

single programming model onto their applications.  CAFE is focused on providing a 

direct solution to data partitioning and data transfer, yet still allows developers to keep 

explicit control over the scheduling decisions of the flow of data. 

First, we explained our initial set of design goals for CAFE: we wanted a 

lightweight, flexible, and non-intrusive framework that keeps the developer close to 

the hardware.  In practice, we were able to accomplish this by employing a metadata 

type to serve as the link between the application code and our framework library, in 

addition to designing an open data transfer pipeline which allows developers to swap 

out stages within the data partitioning and data transfer process.  As a result, we 

believe our framework to take a unique approach. 
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Next, we discussed the structures and utilities provided by the CAFE API to 

help developers partition their data into SPU-sized payloads and dispatch them to the 

SPUs.  In CAFE, the core abstraction is called a job, which represents a unit of work 

over a SPU-sized payload of data.  A CafeJob does not actually own this data to avoid 

the performance and memory overhead incurred by a deep copy.  A CafeJobQueue 

can automatically be created from a dataset using one of the generators provided in the 

framework.  CAFE also supplies the appropriate utilities for transferring these jobs to 

and from the SPUs in both a single- and multi-buffered fashion.  Under the hood, we 

have employed the data transfer technique described in our discourse on DMA in 

Chapter 4 in an effort to maintain the best performance possible. 

Thereafter, we outlined a pair of programming models which utilize the 

mechanisms provided in CAFE: the Batch-Sync programming model and the 

Subqueue Streaming programming model.  In the Batch-Sync paradigm, the PPU 

dispatches batches of CafeJobs to the SPUs from a CafeJobQueue created from an 

input dataset.  Meanwhile, the SPU sits idle waiting for this job in a message pump; 

the SPU will either be notified that there is a job waiting or that it should terminate.  If 

a CafeJob is dispatched, the SPU will retrieve the corresponding data payload, 

perform the appropriate processing, send back any results necessary, and return to 

waiting in the message pump.   While slower than the Subqueue Streaming model, the 

Batch-Sync paradigm allows the PPU to employ checks and balances to alter the flow 

of data to the SPUs if needed.  In the Subqueue Streaming model, the CafeJobQueue 

created from the input dataset is further partitioned into subqueues which are 

dispatched to each of the SPUs.  In this paradigm, the SPUs are responsible for 
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retrieving the jobs themselves, as opposed to waiting on the PPU to coordinate the 

distribution of jobs; in other words, there is no need for a message pump because the 

tasks have already been divided amongst the processor prior to their transmission.  

Effectively, this means that once the subqueues are dispatched, the jobs will run to 

completion without the opportunity for interruption or reorganization. 

 

Chapter 5 Notes 

1. It should be noted that the CafeJobSplitter has no way of knowing how 

much actual memory is available on the SPU, so it will generate jobs for any 

arbitrary size it is given. 

2. The size of a SPU binary can be determined with the spu-size program in the 

spu-binutils package.  Usage: spu-size <binary_file>. 

3. All CAFE mechanisms assume and utilize 128-byte alignment when 

partitioning data and creating CafeJobs. 

4. The stride is one of the primary indications for why we state that our 

framework is geared towards stream-processing: we expect input buffers to 

uniformly consist of the same structure types; otherwise a general partitioning 

scheme would be much more difficult to implement and use in practice.
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Chapter 6: Example Applications and Results 
 

In the previous chapter, we presented a pair of base templates for developing 

an application using CAFE.  Now, in this chapter we will outline actual applications 

created with our framework which employ these templates and discuss the results. 

It is our intention to be thorough in the implementation details in an effort to 

give the reader better insight into the utilities provided by the framework.  While each 

of the following applications was implemented and run on a Cell BladeServer, we note 

that only a single Cell processor was used to gather the results.  Since CAFE places no 

restrictions on the number of SPUs used during program execution, any of the 

following applications can easily be extended to utilize both processors on a blade. 

 

6.1 SAXPY 

The primary pair of application implementations we will discuss stem from a 

very simple operation: the Scalar Alpha X Plus Y, or more commonly referred to as 

SAXPY.  SAXPY calculates the following expression: ][][][ ixiyiz ⋅+= α , for all i  in 

the associated arrays x , y , and z . 

We have chosen this particular application for a few reasons.  First, it is a 

standard benchmark computation across the High-Performance and Scientific 

Computing communities, and thus familiar.  It is also a very common and useful 

operation that is usually a component part to a much larger algorithm.  Finally, the 

individual computations are all independent of each other, allowing us to exploit the 

operation in a data-parallel manner. 
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In terms of implementation, we present both Batch-Sync and Subqueue 

Streaming versions of SAXPY.   Throughout, we will discuss the applications in terms 

of the framework and present the appropriate pseudocode.  Finally, we will compare 

the runtime results to confirm the assertions from Section 5.3.2. 

 

6.1.1 Batch-Sync SAXPY 

The Batch-Sync implementation is fairly straightforward.  It follows the 

pipeline model described in Section 5.3.1 as shown in the pseudocode in Figure 6.1.  

We also note that the code itself follows the sample source provided in Chapter 5 

almost verbatim, with the exception being the fact that here we now have two input 

buffers and thus a pair of corresponding CafeJobQueues. 

 

 
Figure 6.1: Batch-Sync SAXPY Pseudocode 
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When we create the CafeJobQueues for the x  and y vectors, we must inform 

our data-splitter of the stride to use and the maximum size for the payload that each 

job can contain.  In this case, the stride is simply the size of the data type in each 

vector (which could be int, float, double, or any object with the appropriate 

operator overloads).  Since we must fit three buffers of equal size on the SPU to 

perform this operation (one for x , y , and the result buffer z ), we can compute the 

maximum job size according to: ( )( ) 3 /     256 codeSPUofsizeKB − . 

In the job queue loop on the PPU, the metadata sent out includes the CONTINUE 

event message and an address to a control structure.  We note that this differs slightly 

from the outline in Chapter 5 since we have more information to deliver to the SPU 

than just a single CafeJob address.  The control structure holds the job addresses as 

well as the count of the elements to be processed during this SPU job.  Granted, we 

could send these off in a sequence of mailbox messages, but we find it much more 

convenient (in terms of both implementation and maintenance) to DMA a control 

structure rather than managing a set of mailbox transfers that must also adhere to the 

limits of the mailbox queue depth. 

Although the Batch-Sync method is a nice, simple model that will certainly 

exploit data-parallelism in an intuitive manner, it has one critical flaw as we pointed 

out in previous chapter: the SPUs must synchronize with the PPU so that the batches 

are all processed in lock-step.  This serialization is an unnecessary constraint for our 

particular application.  As such, we will now examine a Subqueue Streaming 

implementation of SAXPY. 
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6.1.2 Subqueue Streaming SAXPY 

Our SAXPY implementation can be accelerated if we reorganize how we send 

off our jobs into a more stream-like manner.  In other words, instead of the PPU 

continually designating which job each SPU is to process next, we can precompute 

this sequence of jobs.  As we saw in Section 5.3.2, the most convenient way to 

partition the job queue is to designate a contiguous sequence of jobs for each SPU so 

that each subsequent job address can be computed by adding an offset to the address 

of the initial job (as opposed to explicitly transferring the address as we do in the 

Batch-Sync method).  As outlined in the pseudocode below, we make use of CAFE’s 

subqueue partitioning routine to automatically handle this preprocessing task. 

 

 

Figure 6.2: Subqueue Streaming SAXPY Pseudocode 



103 

 

We would like to draw our reader’s attention to the differences between the 

loops on the PPU in the two implementations.  First, the Batch-Sync method must not 

only dispatch the metadata control structure for each job (handled by an inner loop 

over the processors associated with the current batch of jobs), but also must wait for 

each SPU to signal its completion before continuing (handled in a separate secondary 

inner loop).  However, in the Subqueue Streaming method we are able to eliminate the 

outer loop and produce a much cleaner (and faster!) result. 

This central change echoes in SPU implementation.  Since the Subqueue 

Streaming method is no longer dependent upon the supervision of the PPU, the main 

loop changes from an event-driven loop to a loop over the jobs in the subqueue, which 

also requires the control structure retrieval to be performed outside the loop. 

 

6.1.3 SAXPY Results 

 While it stands to reason that the Subqueue Streaming method is faster than the 

Batch-Sync method by intuition, we now provide the appropriate analysis to answer 

the question of how much faster it can be. 

To start, we present Figure 6.3 below that delineates the total runtime for the 

Batch-Sync and Subqueue Streaming SAXPY SPU implementations.  Note that the   

x-axis represents the size of each of the vectors in terms of elements where 1024=K  

and ( ) 104857610241024 =×=M . 
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Figure 6.3: SAXPY SPU Implementation Runtimes 

 

The runtimes shown above should come at no surprise.  We can see that before 

a payload size of a million elements (in this case floats) the SPU implementations 

hover around the same runtime.  This is most certainly because of the SPU thread 

spawning (for 8 SPUs) and job queue initialization times that are added on top of the 

data processing.  Furthermore, the affects of this additional setup time is echoed in the 

relative performance between the SPU implementations and the PPU implementation, 

shown in Figure 6.4.  However, after a million elements we begin to observe 

significant speedup. 

Moreover, we have also included a plot of the relative speedup between the 

two SPU implementations in Figure 6.5 to confirm our intuitions of the supremacy of 

the Subqueue Streaming method over the Batch-Sync method. 
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Figure 6.4: SAXPY SPU Speedup over PPU 

 

First, we would like to draw the reader’s attention to the 12.5x speedup of the 

SPU Subqueue Streaming method over the PPU in the final benchmark of Figure 6.4 

as a demonstration of the possibility for super-linear speedup with Cell.  This is 

namely due to the difference in data caching between the PPU (standard memory 

hierarchy) and SPU (no cache, just local store).  Effectively, the combined amount of 

data sitting in the local stores across the SPUs is 1.2 MB (150 KB each) which 

translates to enough data for 400 K SAXPY operations before it has to be switched out.  

This is much larger that the 32 KB cache size on the PPU.  Thus, this means that the 

PPU must fetch data approximately five times more often than each of the SPUs since 

they each obtain their data payloads all at once, which allows them to perform the 

computation for a longer period without interruption. 
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Figure 6.5: SAXPY SPU Streaming Speedup over SPU Batch-Sync 

 

Second, we note that in this application we have observed that the Subqueue 

Streaming method can render up to a 1.5x speedup over the Batch-Sync method.  

Additionally, the upward trend shown in Figure 6.5 is caused by the increasing 

number of CafeJobs generated to process the increasing size of the dataset.  In the 

Batch-Sync method, each additional CafeJob comes with an additional overhead of 

dispatching and waiting for that job to complete.  However, the Subqueue Streaming 

method does not incur this additional overhead since each SPU is responsible for its 

own set of CafeJobs and does not require the supervision the PPU nor does it require 

the rest of the SPUs to complete their jobs in lock-step.  Therefore, we project that this 

factor of improvement of the Subqueue Streaming method over the Batch-Sync 
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method will continue to grow in cases of more complicated computational operations 

where processing times on the SPUs may have a higher variance since it would require 

the PPU to wait longer to complete the synchronization step before dispatching 

another batch. 

Furthermore, although it is not shown here, we also advocate the employment 

of multi-buffering to layer the computation over the latency caused by the data transfer.  

We project that combining this technique with the Subqueue Streaming approach to 

the implementation would further improve performance since it would allow the SPU 

to almost be in a continual state of computation. 

 

 

Figure 6.6: SAXPY Implementation Runtimes and GFLOP Rates 

 

Finally, we note that we were able to reach 12.4 GFLOPS with the Subqueue 

Streaming implementation as shown in Figure 6.6.  We believe that this is a modest 

showing for our application since we gave no special attention to tuning in terms of 

optimal performance, simply because the main goal for this application was to 

demonstrate the implementation level differences across the programming models 

using CAFE.  In the light of this circumstance, we believe that additional 
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modifications (such as the aforementioned multi-buffering) could be employed to 

further improve the performance on top of the current implementations. 

We conclude this section with the final line counts for each of the SAXPY 

implementations in Figure 6.7 below.  

 

 

Figure 6.7: SAXPY Implementation Line Counts 

 

6.2 Ray Tracer 

 The next application we present is a simple ray tracer.  We chose this 

application because it requires a significant amount of computational work.  It also is 

comprised of multiple stages, two of which can be parallelized.  These characteristics 

will allow us to demonstrate CAFE’s effectiveness and non-intrusive nature in a 

sizable application. 

 

6.2.1 Ray Tracing, Briefly 

 For those not familiar with the fundamentals of ray tracing, we will briefly 

present a high-level overview of the algorithm.  For more information see [Shirley02]. 

The brute-force approach to ray tracing can be summed up in the following 

algorithm (see Figure 6.9 for illustration): 
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Figure 6.8: Serial Brute-Force Ray Tracing Algorithm 

 

The application uses two datasets: the image data and the scene data.  While 

the image data is stored as a grid of pixels in the final output image, each pixel 

initially starts off as a “primary ray” from the eye / camera that passes through a 

virtual image plane.  The scene data is composed of a list of triangles, materials, and 

lights.  Conventionally, the geometry is read in from one or more model files from 

disk, each of which can contain thousands to millions of triangles.  It is then 

transformed to its desired location and orientation in the scene.  Each triangle in a 

mesh has an associated material to describe its appearance under the influence of the 

lights within the scene. 
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Figure 6.9: Ray Tracing in Action 

 

Computing the primary ray requires the knowledge of a viewing position and 

direction as well as the dimensions of the image plane.  The image plane is broken up 

into a grid structure according to the resolution of the output image in pixels.  A ray is 

constructed to start from the viewer’s position and passes through the center of each 

pixel square. 

To test for an intersection of a ray and triangle, the ray is not only checked for 

an intersection within the bounds of the triangle, but is also checked to be closer than 

any other previous intersection along the path of that ray, since an object closer to the 

eye will block the view of any other objects directly behind it.  Provided both 

conditions hold, we say that we have a valid intersection and can shade that pixel with 

the color of the associated triangle’s material.  If there is an intersection, the result is a 

HitInfo structure that stores the data required by the shader to compute the final 

output color. 
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The bulk of the time spent by this algorithm is within the ray-triangle 

intersection test.  Thus, it has been the subject of many research papers as to how to 

alleviate this bottleneck through the use of acceleration structures.  However, in the 

interest of simplicity no acceleration structures were used in our implementation1.  

This also allows us to deterministically compute the number of ray-triangle 

intersection tests that must be performed to generate an mn×  image: 

Ray-Triangle Intersection Test Count ( ) unttriangleComn ××= . 

 

6.2.2 Ray Tracing on Cell 

In our implementation, the PPU loads the appropriate scene data and manages 

the two parallel stages: the first consists of the primary ray computations and the ray-

triangle intersection testing, while the second shades the corresponding image pixels.  

Consequently, we have packaged the ray-triangle intersection test and shader into 

separate SPU binaries.  This makes it convenient to swap out the intersection testing 

method or shader for a different one with minimal code change.  Furthermore, when 

the scene is read in from file a corresponding list of shaders is assembled; we can then 

use this list to dynamically associate the correct SPU shader binary with each triangle 

mesh according to requirements of the scene. 

It is easy to imagine that we can split the image into a number of slices and 

since no pixel depends on any other we know that each slice itself is independent.  

Therefore, we can simply run the same serial brute-force ray tracing algorithm on each 

slice.  As a result, we have setup our ray tracer pipeline (shown in Figure 6.10 below) 

to split the image into k slices, where k  is the number of available SPUs.  Each SPU 
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is initialized with the ray-triangle intersection binary and is sent a metadata control 

block that contains the camera information and a set of bounds that delineate the slice 

of the image plane that the SPU is responsible for processing.  At this point, the SPUs 

are equipped to compute the primary rays and perform the ray-triangle intersection 

tests required for a small subset of the image at a time.  This subset is a portion of a 

HitInfo result buffer on the PPU and can be partitioned with the mechanics provided 

in the CAFE library.  Scene geometry is DMAed for intersection testing in accordance 

with the Subqueue Streaming paradigm introduced in Section 5.3.2 and the resulting 

HitInfo structures are stored into the output buffer and sent back to the PPU as they 

are completed. 

 

 

Figure 6.10: Ray Tracer Pipeline on Cell 
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Before continuing on to the next stage of the pipeline, we should highlight a 

primary difference between a ray-triangle intersection test on a conventional processor 

like the PPU and the same test on the SPU.  Normally, an intersection test on a 

conventional processor takes advantage of employing early rejection measures to 

avoid any unnecessary computations, making it a branch-heavy yet more efficient 

operation.  However, the opposite approach is taken in the SPU implementation, 

which leads to a more computationally-intensive but branchless operation, better 

catering to the SPU’s defining strength.  This implies that through our partitioning 

each SPU is given an identical workload size in both data and computation, each 

totaling to ( )
444 3444 214444 34444 21

nComputatioTriangleRaySizeData

operationsvectorunttriangleCokmn
    

  80/
−

××× . 

Once all k  SPUs have completed this stage, the PPU terminates the Ray-

Triangle Intersection threads and launches a new set of SPU threads with the 

appropriate shader binaries.  At this point, we can now split the buffer of HitInfo 

structures again and loop over the job queue as usual.  This repartitioning of the 

HitInfo structures buffer is performed because the shader binaries do not require as 

much data to be present on the SPU to complete each operation as the ray-triangle 

intersection since no scene geometry is needed.  Thus, only image data is needed and 

so we can fit more pixels into the SPU local store.  For example, in the ray-triangle 

intersection routine we might only be able to process 20 rows of pixels of the image at 

a time, while in the shader we might be able to process 40 rows of pixels at a time.  

This scenario also underscores the versatility of the level of the structures provided by 
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the CAFE framework as it allows developers to partition their datasets in ways best-

suited for each task at different stages within their application. 

 

6.2.3 Ray Tracer Results 

We now present experimental results comparing the running times of our PPU 

and SPU ray tracer implementations, as shown in Figure 6.11 and Figure 6.12.  We 

used three test scenes of varying sizes, each rendered at a resolution of 512512× , or 

256 K pixels.  It should be noted that we have plot the results of the two 

implementations separately due to the large differences in magnitude. 
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Figure 6.11: PPU Ray Tracer Runtime 
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We implemented both a Batch-Sync and a Streaming implementation for the 

SPU.  Interestingly, the differences in the running times differed by an insignificant 

amount due to the overwhelming computational cost found in the ray-triangle 

intersection testing routine.  In fact, under further investigation, we found that the ray-

triangle intersection testing accounts for almost 90% of the application runtime in our 

SPU implementations.  As such, we project that the employment of acceleration 

structures would bring forth differences between the methods similar to those we 

observed in the SAXPY implementation comparison.  This is because acceleration 

structures cut down on the amount of computation needed per pixel, potentially giving 

the communication component a larger percentage of the application runtime.  
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Figure 6.12: SPU Ray Tracer Runtime 



116 

 

The SPU ray tracer measurements shown above boast a range from 23-33% 

performance improvement over the PPU implementation.  Similar to our previous 

application, we note that the reason behind the super-linear speedup stems in part from 

the difference between the size of combined local storage across all eight SPUs (again, 

150 KB each = 1.2 MB total) and the size of PPU’s cache (32 KB) as explained in 

Section 6.1.3.  Additionally, this improvement also stems from the increased speed of 

the SPU’s single-precision floating-point operations over the PPU. 

To better see these differences in runtime performance, we present the relative 

speedup of the SPU Subqueue Streaming implementation over the PPU 

implementation in Figure 6.13.   
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Figure 6.13: SPU Ray Tracer Speedup over PPU 
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 We note, however, in order to gain this performance improvement via the use 

of the SPUs an additional 740-790 lines of code were required.  This is not only due to 

the additional CafeJobQueue setup and processing, but also to the different nature of 

the algorithms for the ray-triangle intersection and shader on the SPU.  The final line 

counts for our implementations are given in Figure 6.14 below. 

 

 

Figure 6.14: Ray Tracer Implementation Line Counts 

 

6.3 Image Filtering via Chaining 

 One programming model we have continued to promote throughout this work 

is Chaining.  We believe that this is an important and misrepresented programming 

paradigm for Cell that certain applications can map onto in both a clean and intuitive 

manner.  Therefore, we would like to investigate this method in an application to not 

only show its usefulness but also to demonstrate CAFE’s ability to support more than 

just the Function-Offload programming model. 

 To demonstrate, we consider the application of a pair of filters to a given 

image to produce a subsequent output image.  For the sake of simplicity, we will only 

discuss a chain of two SPUs, though we could extend the same principles to a chain 

utilizing any number of SPUs supported by the system. 
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6.3.1 Parallel Image Processing 

In this section we present the basic concept and process behind applying a 

filter to an image.  We also discuss the necessary requirements for parallelization.  

However, readers are encouraged to see [Gonzalez02] for a more thorough discourse 

on the topics of image processing. 

In image processing, the process of applying a filter to an image is carried out 

by performing the same local computation upon each pixel of an input image to 

produce a corresponding output image.  An image filter (also commonly referred to as 

a kernel) is a square block of values conventionally of odd dimensions (this way there 

is a distinct center pixel corresponding to a resultant pixel in the output image).  This 

grid of values is convolved with the pixels of the input image to produce the pixel 

values of the final output image.  The convolution operation works in the following 

manner: the values in the filter are used as weights for the corresponding pixel values 

in the image and these products are all summed into a single result value.  A simple 

example of this procedure with a 33×  kernel is shown in Figure 6.15 below. 

There are many types of filters that may be applied to an image, including 

those used for blurring, sharpening, edge-detection, color level adjustment, etc., and in 

most cases this same process of “sliding” a kernel over an image is employed in one 

form or another.  Also, kernels can vary in size as well as in depth (of color channels); 

however, for the sake of simplicity we shall limit our discussion to 33×  kernels which 

only operate on a single color channel at a time, though the work that follows can most 

certainly be extended to the needs of more complicated filters. 
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Figure 6.15: Sliding a 3x3 Kernel across the Pixels of an Image 

 

It is important to realize that this is actually a very different type of operation 

than the ones we examined in the previous sections.  In particular, this routine requires 

the values of the neighboring elements of the particular element under consideration.  

In other words, although each element can be processed individually (i.e. it is still a 

data-parallel operation), the set of data elements this operation is dependent upon 

spans a small window within the dataset (as opposed to just a single element).  To put 

this in terms of our 33×  image filter, each row of pixels in the image requires the 

values of the rows above and below it in order to carry out its computation.  We also 

assume in our case that the borders of the image are padded with zero-valued pixels 

(this is just one of many ways to handle border pixels, see [Gonzalez02] for a 

complete list of options). 
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This behavior has repercussions for a parallel implementation.  Primarily, 

when we partition the image data to be spread across the processors, we must in fact 

include these extra rows to correctly process the image.  These ghost cells exist only to 

support the computation of other data and are not considered elements to be processed, 

only referenced.  As such, the data distributed amongst the processors must have 

overlapping segments in order to properly process the entire image (see Figure 6.16 

for a simple example between two processors).  From hereon we will refer to this 

overlapping scheme as windowed partitioning. 

 

 

Figure 6.16: Windowed Partitioning of an Image between Two Processors 

 

As a matter of fact, image processing is not the only application type that 

requires ghost cells and the employment of windowed partitioning for an accurate 

parallel implementation; other applications include stencil methods (i.e. fluid 

dynamics simulations, heat equation solvers, etc.) and connected component labeling.  

Therefore, we decided that including an alternative partitioning scheme for creating 

jobs in this manner would be a valuable asset to provide in the framework. 
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6.3.2 CAFE Support for Windowed Partitioning 

The job partitioning scheme we have utilized in each of our previous 

applications will not suffice for the requirements of the image filtering process.  Our 

current partitioning scheme assumes that each element is not dependent upon any 

other data within the same dataset, and therefore does not take care to include any 

extra data than the elements to be directly operated upon during that job. 

For this very reason, CAFE provides a secondary data splitter which allows the 

client to specify the number of ghost rows required to be included in each job.  Like 

the uniform data splitter, it performs the appropriate partitioning within the dataset and 

produces a CafeJobQueue.  As such, the job creation pipeline for a windowed 

partitioning application is no different from the uniform partitioning pipeline 

previously introduced and exemplified.  Each job in the resultant job queue starts and 

ends at the appropriate places in the dataset to compensate for the ghost cells and 

holds an offset to the start of the actual data to be processed. 

We note that it is also common to perform a windowed partitioning along the 

columns in addition to the rows—separating the dataset into a grid of sub-blocks.  

However, unfortunately we cannot support this method of partitioning since CafeJobs 

require their data to be completely contiguous within the dataset because they do not 

make a copy of the data they encapsulate.  Consequently, this restriction implies that 

the size of a row and its required ghost cells cannot be larger than the SPU local store, 

putting a limit on the pixel resolution of the image that may be processed with this 

functionality.  As an example, for an image of floating-point colors in RGBA format, 

each pixel is represented by 16 bytes; we can fit three rows (for a 33×  kernel) of  
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5120 (5K) pixels comfortably in the SPU store: ( ) KB 240bytes 1635120 =×× .  

However, we note that we will actually need a secondary buffer (for reasons discussed 

next), and therefore are actually limited to images of half this width. 

 

6.3.3 Chaining Implementation Details 

While the essence of the Chaining model lies in the scheduling, there are a few 

particular components that remain unresolved.  We will discuss these details here and 

outline the basis for a simple Chaining application on Cell. 

First, when data needs to be transferred from one SPU to another we must take 

care not to overwrite the data currently in the subsequent stage in the chain.  Thus, the 

SPUs need to communicate to each other when they have completed their respective 

workloads.  This could be handled in a few different ways, but we decided to achieve 

this effect via a barrier supervised by the PPU.  We have done this for two reasons: 

first, a barrier can easily be implemented via the familiar mechanism of mailboxes; 

second, this gives the PPU the opportunity to perform a necessary cleanup operation. 

This cleanup operation is required because of the existence of the ghost cells 

embedded within the payload data.  As a result of not making a copy of the data into 

the CafeJobs, the original windowed partitioning data cannot be compromised during 

the processing since some parts of the data are required in multiple jobs.  The upshot is 

that we cannot directly write to this original buffer at the end of the chain.  Therefore, 

a secondary scratch buffer is needed to store the output.  Also, the ghost cells may 

possibly offset the real data in such a way that it no longer starts on a DMA-compliant 

byte boundary, meaning that we cannot produce the output image by simply DMAing 
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only the processed data back to the PPU when we have finished the SPU chain.  Our 

solution was to DMA the entirety of the payload back to the aforementioned scratch 

buffer on the PPU which can then assemble the processed output data accordingly, 

avoiding the need to place heavier countermeasures in the job DMA pipeline.  We 

have found this technique to be quite suitable for our image filtering application. 

To clarify, we now present a template for a Chaining application using CAFE 

in Figure 6.17 that employs the techniques outlined above. 

 

 

Figure 6.17: Template for Chaining Application using CAFE 

 

6.3.4 Image Filter Results 

We now present results from our Image Filter application which follows the 

template in Figure 6.16.  The application applies a pair of blur filters to different 

channels of the given image and writes the result to file.  However, we note that the 

time to write the final image to file is not included in our measurements below. 
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First, we measured the running time for applying these two filters to images of 

varying sizes as shown in Figure 6.18 below.  The x-axis labels represent both the 

image width and height at the same time (i.e. 512 represents a 512512×  image).  

However, it should be noted that although we only have provided measurements for 

square images whose dimensions are powers of two, this is not an implicit requirement 

of the application; images may be of any dimensions in width and height (within the 

size constraint of the SPU local store as previously discussed). 
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Figure 6.18: SPU Chain Filter Runtime Results 

 
 

Next, we provide a plot of the speedup of the SPU implementation of the 

image filter over the PPU implementation in Figure 6.19. 
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SPU Chain Filter Speedup over PPU
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Figure 6.19: SPU Chain Filter Speedup over PPU (Normalized to 1) 

 

Here we note that we see a drop in speedup for our last measurement.  We 

believe this to be a direct result of the number of jobs generated for the image (which 

in fact turns out to be 1 per row).  Figure 6.20 shows the size (in bytes) of a row in the 

image and the corresponding number of CafeJobs generated to encapsulate this row in 

addition to its required ghost rows (one or two rows depending on its position within 

the image). 

 

 

Figure 6.20: SPU Image Filter Statistics 
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Finally, we present the relative speedup of the SPU Chain Filter over an 

Offload implementation in Figure 6.21 below to confirm our previous remarks 

concerning the benefit of employing Chaining over the Function-Offload 

programming model for particular applications such as this. 
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Figure 6.21: SPU Chain Filter Speedup over Offload Filter 

 

Here we observe that additional data transfers to the PPU and back inherent to 

the Function-Offload paradigm can be expensive in comparison to the Chaining model 

which invokes a more direct route by ferrying the data between the SPUs.  Most 

certainly, Chaining requires developers to add an layer of synchronization on top the 

SPUs (maintained by the PPU) to ensure that important data is not overwritten; 

however, it is apparent that it is well worth the effort to gain the improvements in 

performance such as those depicted above. 
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6.4 Bitonic Sort 

 The final application we will examine is an example of a port from straight 

CellSDK code to CAFE.  With this example we wish to demonstrate the important 

principle that while CAFE presents a higher level view of the architectural mechanics 

exposed via the CellSDK, it does not impair the fundamental low-level control 

developers have over the system.  Furthermore, we would also like to show that there 

is no performance penalty for using this higher level interface. 

As such, we have ported a sorting application originally written by developers 

at IBM.  It is driven by the Bitonic Sort algorithm (also known as a Batcher Sort), 

which was designed specifically for use in the parallel processing domain.  For more 

details on the Bitonic Sort, we refer our reader to [Sedgewick98], [Christopher06], or 

their favorite algorithms text. 

 

6.4.1 Source Modifications 

First and foremost, we would like to clarify that no algorithmic improvements 

were employed to the code during the port.  In fact, the only high-level change made 

to the implementation was to the method by which the data is transferred between the 

PPU and SPUs.  As a result, the overall change in source is not as significant in 

volume as it is in refinement.  Primarily, low-level commands to the MFC using raw 

pointers have been replaced with the appropriate equivalent in terms of CafeJobs, 

CafeJobQueues, and MemoryRegions.  In other words, after porting the code now 

reads at a higher level, closer to the abstractions of the actual application and is 

therefore much easier to grasp, maintain, and debug. 
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We observe that the original source code dedicates over 50 lines to 

implementing its own data transfer functions similar to those already available in the 

CAFE library.  This same pair of functions is practically a staple of Cell application 

development.  Most certainly, such code repetition is a strong indication of the need 

for abstraction and repackaging, which in our case meant into the form of a framework 

library.  We also note that this same pair of functions was the source of many of our 

early struggles in Cell development.  Thus, it was of great value to us to centralize this 

fundamental pair of operations so that they could not only be easily maintained and 

tested, but also accessed and utilized by all of our past, present, and future applications. 

 

 

Figure 6.22: Bitonic Sort Implementations Line Count Comparison 

 

 In Figure 6.22 above, we report the final line count for both implementations.  

It stands to reason that the extra setup for assembling the CafeJobs and their 

CafeJobQueue would require additional code on the PPU side.  Also, we see a drop in 

lines of code corresponding to the exchange of the aforementioned data transfer 

functions for CAFE’s higher level job abstraction.  Certainly, data payload retrieval 

using CAFE’s job abstraction does not come free in terms of this measurement; 

however, in spite of this fact, the overall result is still more compact than the original 

IBM implementation. 
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6.4.2 Runtime Performance 

 As one may suspect, the performance differences between the IBM and CAFE 

implementations are negligible.  This is because in both cases the same MFC functions 

are being called under the hood, allowing us to maintain the same performance 

available even as if we were using the lowest level of abstraction. 

To demonstrate this point, we present the following set of runtime results in 

Figure 6.23 below, comparing the two SPU implementations for a series of data 

vectors ranging from 4096 to 16 million elements.  Both implementations make use of 

all eight SPUs to sort a given number of signed integer elements.   

 

Bitonic Sort SPU Runtime Comparison
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Figure 6.23: Bitonic Sort SPU Runtime Comparison 
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From these results above, it is readily apparent that the differences in running 

time between the implementations are indistinguishable since the measurements 

continue to overlap throughout.  Also, we note that the arc formed up to 256 K 

elements (equivalent to 1024 KB) is due to the fact that we can still house all of the 

elements across the combined local store of the SPUs.  However, when we make the 

jump to 512 K elements (2048 KB) we can no longer house all of this data in the SPU 

local stores (in addition to the code!), which forces the implementation to invoke an 

out-of-core version of the Bitonic Sort to execute over this dataset. 

 

6.4.3 Final Outlook: CellSDK and CAFE 

 In conclusion, we have demonstrated through this example that we can use the 

higher level interface provided by CAFE to implement our application in a more 

intuitive manner, while still achieving performance results similar to those attained by 

the low-level MFC calls exposed by the CellSDK.  We believe that this is one of the 

most important characteristics of CAFE since it preserves the same level of control 

and available performance granted by the hardware. 

  

6.5 Summary 

 In this chapter we have examined a few example application implementations 

utilizing the CAFE framework.  Throughout, we have taken care to observe and 

investigate CAFE’s effectiveness and versatility within these applications. 

 First, we took an in-depth look at a pair of SAXPY applications demonstrating 

the implementation and performance differences between the Batch-Sync and 
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Subqueue Streaming methods for data transfer.  As a result, we were also able to show 

the CAFE’s flexibility through supporting different paradigms according to the needs 

of the developer and their application. 

 Second, we considered CAFE’s effectiveness within a large-scale application 

in the form of a simple ray tracer.  The multiple stages of the ray tracing pipeline 

allowed us to observe the powerful benefits of the manner by which our framework 

interfaces with the application data through the abstraction of CafeJobs and 

CafeJobQueues.  In addition, we also presented a set of runtime results to exhibit the 

superiority of Cell in a computationally intensive application. 

 In our third application, we demonstrated the versatility of our framework by 

implementing a series of image filters in accordance with the Chaining programming 

model.  We also showed the performance benefit (in our case 1.5x) to employing the 

Chaining paradigm over the Function-Offload model for applications such as this. 

Finally, through our port of the Bitonic Sort application we demonstrated 

CAFE’s ability to preserve the same level of control and available performance 

granted by the hardware even through its higher level software development interface. 

 

Chapter 6 Notes 

1. Acceleration structures in ray tracing help to quickly determine which triangles 

need to be tested against the ray.  As such, acceleration structures can greatly 

improve the performance of a ray tracer.
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Chapter 7: Future Work 
 

Although, CAFE has undergone a few changes from its initial conception, the 

drive of creating a lightweight, flexible framework has remained throughout.  The 

utilities featured in the CAFE library were added because we found them to be useful 

across multiple applications and they stood out as foundational components to Cell 

application development.  In accordance with these fundamental principles, there are a 

few outstanding items that we would like to suggest as future work for the framework 

library. 

While we believe our minimalist approach gives the developer the most control 

over the scheduling of their application, we do see the benefit in having an automatic 

method of ferrying a payload to and from the SPU.  We believe that a simple job 

scheduler could be implemented as another library on top of our current base.  This 

way, our library would still offer our clients the freedom to choose which 

programming model they wish to use to better fit their application needs, yet give 

them a more “automatic” option for those who may be less interested in the intricate 

control over communication.  Certainly, this scheduler is a higher-level component, 

but, for instances where fine-grain data transfer control is not required, it would even 

further help relieve developers of having to implement another common mechanic to 

their applications. 

Also, it would be an additional convenience if support were added for 

designating groups of SPUs by their processor IDs.  This is a useful piece of 

information that allows clients to produce specific processor configurations such as 
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token rings or hypercubes.  Currently through the mechanisms exposed by the 

CellSDK, it takes a little bit of work in order to obtain the node IDs and set up the 

desired configuration.  However, this process appears to be fairly straightforward to 

generalize and could be extended into another library feature. 

In the interest of porting, we think it would be useful to add a “Cell simulator” 

to our Win32 backend.  What we mean by this is that we would like to wrap the SPU 

thread creation process so that depending upon which platform the code is running 

(either PPU or Win32) then the framework would create the appropriate thread type 

(SPU thread or Win32 thread).  This would allow for a more uniform testing base 

across the Cell and Win32 environments, as well as enable us to test more of the Cell-

specific code using a unit-testing framework. 

Finally, although we have never required the employment of SPU overlays in 

our own applications, their usefulness cannot be ignored.  As such, we believe that 

additional support for overlays could be added to ease the development efforts of 

anyone who wished to dynamically inject code at runtime rather than spawning new 

SPU threads for each task type.
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Chapter 8: Conclusion 
 

“One thing it is important to note is that while Cell offers huge potential 

computing performance, it doesn’t come free.” 

– Nicholas Blachford [Blachford06] 

 

Throughout this work, we have explored many facets of the Cell processor 

with a particular emphasis on application development.  It is clear that while the Cell 

presents the opportunity to gain significant improvements in performance, the 

additional challenges that developers must face to attain this benefit can be daunting.  

More specifically, to take advantage of the power of the Cell, programmers must have 

a deep understanding of the capabilities of the hardware.   

In response, several approaches, in the form of both libraries and languages, 

have been proposed to alleviate the additional layer of responsibility Cell imposes at 

the software level.  As we observed, most of these solutions exclusively follow the 

Function-Offload programming model by either exposing the hardware through a 

“remote task” abstraction or by supplying an architecture-agnostic interface.  In other 

words, none of the prior work presents the flexibility to employ an additional 

programming model (such as Chaining) using the mechanisms provided in the library 

or language.  We believe this to be detrimental to applications which would benefit 

from being implemented in an unsupported paradigm.  Furthermore, while the 

frameworks presented claim responsibility for the lower level routines of partitioning 

and transferring data back and forth from the SPUs, we also believe that they, in turn, 

usurp control from the developers.  This is counter to one of the fundamental 
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principles upon which the Cell processor was designed: to give the developer more 

control over the hardware.  In consequence, we believe that there is a genuine need for 

a framework library which supplies a sufficient set of utilities for data-partitioning and 

payload transfer, while preserving lower-level control and providing the mechanisms 

necessary to support an array of programming models. 

Therefore, in this paper we introduced our own approach: Cell Architecture 

Framework and Extensions (CAFE), a minimalistic framework designed to assist 

developers in taking advantage of the computational power provided by the Cell’s 

SPUs without forcing a single programming model onto their applications.  CAFE is 

founded on our measurements and observations from Chapter 4, which allowed us to 

recognize several key principles about Cell application development (in terms of the 

intricacies of both SPU threads and DMA) and integrate them into the library.  

Additionally, the utilities provided by the CAFE library are non-intrusive do not 

require additional support from a virtual machine or runtime library, which can be 

expensive in terms of performance and memory, respectively.  As a result, we believe 

our framework to be a unique approach. 

CAFE exposes the hardware through a “remote task” abstraction called jobs 

which can be generated to serve in either of the aforementioned Function-Offload and 

Chaining programming paradigms.  Although the routine to ferry job payloads to and 

from the SPUs is encapsulated in the library, the manner in which they are dispatched 

to the SPUs is left in the hands of the developer.  As we demonstrated in Chapter 5, 

job dispatching can be performed in different ways, including the Batch-Sync and 
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Subqueue Streaming methods, which gives developers more control over the flow of 

data as opposed to relying on a general scheme implemented in the framework. 

However, we also observed that there are a couple of disadvantages to CAFE.  

First, CAFE’s minimalist approach requires developers to write more source code than 

higher level approaches supplied in the more heavyweight frameworks like 

RapidMind.  This was a trade-off for the additional level of control CAFE offers, 

which we felt was an important feature to provide, especially for the scientific 

computing and high-performance communities.  Such control is not exposed in other 

frameworks in an effort to make Cell application development more similar to 

programming for more conventional architectures where the mechanisms for data 

transfer are the responsibility of the hardware.  Also, we found that one of the primary 

disadvantages to employing an abstraction in which the data payloads are “contained” 

by reference (as opposed to having made a deep copy into its own buffer) is that in the 

case of stencil methods, it places a limit on the size of the grid we can operate on due 

to the size of the SPU local store.  This design decision was a trade-off to save both 

time and memory for most other scenarios which do not require a copy. 

In terms of performance, CAFE was not explicitly evaluated against the 

measurements of other frameworks.  Instead, we demonstrated that CAFE 

implementations can still gain the same performance improvements that may be 

achieved through the low-level functions of the CellSDK.  Since these routines are the 

foundation upon which other frameworks are built, we believe that it is possible to 

reach similar levels in performance shown in other frameworks by using our API. 
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Simply put, CAFE is a lightweight, versatile framework that presents the 

mechanisms for data partitioning and transfer at a higher, more intuitive level, which 

allows developers to focus on the details of the design and implementation of Cell 

applications without incurring a loss in performance. 
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Appendix A: Scalable City 

 

Scalable City is algorithmically-driven work by Sheldon Brown.  It has been 

released in a series of installations and media across the globe. 

Along the way, this research project (and ultimately the CAFE framework) 

started as an effort to speed up the preprocessing stage of the Scalable City pipeline 

(described below).  It was proposed that most of this step was CPU-bound and so our 

approach to alleviating this bottleneck was to utilize the raw processing power 

provided by an IBM Cell BladeServer.  Due to my prior experience with the Sony 

Playstation 3 (PS3) through my internship at High Moon Studios, I was chosen to 

spearhead this development pipeline. 

 

Scalable City Pipeline 

At its core, the Scalable City project generates the end product via procedural 

methods.  To achieve this result, an extensive pipeline of algorithmic techniques from 

graphics, image processing, and computer vision was designed and implemented.  The 

final application is a 3D virtual environment in which a user can interact with the 

procedurally generated world. 

The Scalable City pipeline begins with real-world satellite image data.  The 

image is gray-scaled and used to generate a heightmap corresponding to the intensities 

of the pixel colors.  This heightmap is then altered through a series of layered 

transformations and summed to produce a new heightmap. 
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This heightmap is used to produce a terrain for the environment, upon which 

the urban elements will be grown.  We use the term grown because the defining 

elements of the city, the roads, are generated via an L-system plant development 

algorithm.  However, before the roads are laid out, a city boundary must be established.  

This is achieved by employing an edge-detection filter to the heightmap image. 

After a suitable boundary curve has been chosen, the system begins to fill the 

inner region with Archimedes spirals.  These curves are spawned under a customizable 

rule system that governs where and how curves may spawn, as well as prevents them 

from crossing.  Curves may only start from an existing curve (including the boundary), 

and so as each new curve is added to the system, more possible spawn points are 

available to choose from.  The rule system also directs the trajectory of the spirals as 

they stem from their designated spawn points so that they produce smooth transitions 

and intersections not unlike a fern. 

Once a threshold of space-filling within the boundary has been met, these 

curves are then used as a template for the road geometry, which includes the street as 

well as a pair of outlining sidewalks.  Roads are paved along the paths of these curves 

and sewn together via intersection components stationed at the point where a “child” 

curve stems from a “parent” curve.  These intersections come in various flavors 

similar to the letters “Y” and “W”.  Furthermore, a cul-de-sac is generated at the end 

of each road.  Finally, the road geometry is conformed to the terrain. 
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Scalable City Application 

The Scalable City application allows a user to interact with the world as well 

as other procedural elements.  A user is embodied as a vortex of vehicles that is 

constructive in nature.  As the vortex moves along in the environment, the roads 

unfold in front of them, establishing their path down the L-System pattern. 

Scalable City is also populated with structure components, representing walls 

and roofs of suburban housing.  These components are generated via stereographic 

computer vision techniques, which allow three-dimensional mesh data to be extracted 

from a pair of two-dimensional images.  Once generated, these components are 

scattered throughout the landscape and may be picked up by the forces of the user’s 

vortex.  However, instead of leading a path of destruction, the vortex assembles these 

affected structure components into new housing tracts, building order from chaos. 

 

Scalable City and Cell 

After the foundation of CAFE’s core had been developed, the Scalable City 

application was eventually ported to utilize the power of the Cell and demonstrated in 

an exhibit at the IBM booth at the SuperComputing 2007 conference in Reno. 
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Appendix B: CAFE API Reference 

 

Library Overview 
 
cafe Namespace: 
 
Everything in the CAFE API exists in the cafe namespace so it can be used with other 
libraries and software without causing name conflicts.  As such, clients must append 
their usages of CAFE types and routines with cafe.  However, in the interest of 
simplicity and readability we will omit this scoping throughout this reference. 
 
 
CAFE Platform Defines: 
 
 CAFE_PPU 
 CAFE_SPU 
 CAFE_WIN32 
 
CAFE utilizes defines to distinguish processor-specific code.  We use these 
throughout the CAFE library implementation to keep the functionality interface 
sensible in the presence of the different platforms. 
 
 



142 

 

CAFE Structures 
 
In this section we outline the fundamental structures to the CAFE library. 
 
 
MemoryRegion: 
 
A MemoryRegion is a convenient way to pass around a pointer to a contiguous region 
of memory accompanied by its size in bytes.  The MemoryRegion is a data wrapper 
that allows CAFE routines to operate on application data without forcing it to be 
declared as a type from the CAFE library.  This way the application and library are 
only coupled through this single metadata type, and the client still owns their data. 
 
Creating a MemoryRegion: 
 
 MemoryRegion(start, sizeInBytes); 
 

A MemoryRegion must be initialized upon creation.  It takes in the start pointer 
to a data buffer, and the size of the data buffer in bytes. 

 
 
MemoryRegion Members: 
 

start is the starting address to the data buffer to wrap. 
 
sizeInBytes stores the size of the wrapped data (in bytes). 

 
 
MemoryRegion Operations: 
 
 None. 
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Address64: 
 
The Address64 typedef is a union of 64-bit address representations.  It is accompanied 
by a pair of free functions for convenience. 
 
Address64 declaration: 
 
 typedef union Address64_TYPE 

{ 
 unsigned long long ull; 
 unsigned int ui[2];  
 void* p; 
 
} Address64; 

 
An Address64 can be accessed as a single unsigned long long, a pair of 
unsigned ints, or as a void*. 

 
 
Address64 Free Function Routines: 
 
 void Print(const Address64& addr64, const char* label=NULL) 
 
 Prints the Address64 in hexadecimal, appending an optional label if provided. 
 
 
PPU only: 
 

void ReceiveAddress64FromSpu(Address64& addr, 
const speid_t spuID) 

 
Receives an Address64 sent by the SendAddress64ToPpu() routine on the 
SPU. 

 
 
SPU only: 
 

bool SendAddress64ToPpu(const Address64& addr) 
 
Sends an Address64 to the PPU.  Returns true if PPU acknowledges it has 
correctly received the Address64. 
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Data-Partitioning Utilities 
 
In this section we outline the data-partitioning utilities provided in the CAFE library. 
 
 
CafeJob: 
 
CafeJob is the core structure employed by the CAFE data-partitioning utilities 
(discussed later in this section).  A CafeJob holds all of the metadata required to 
transfer a data payload to and from the SPU.  However, it is important to note that the 
CafeJob does not hold the actual payload data. 
 
CafeJobs are explicitly padded to have a size of 256 bytes.  This is so that they may 
be created in sequence in an aligned buffer and be guaranteed to fall on a DMA-
compliant boundary. 
 
Queues of CafeJobs are generated by the CafeJobQueueGenerator and CafeJobs can 
be DMAed to and from the SPU via the routines supplied by the CafeJobDmaManager.  
As such, the internals of the CafeJob were not intended to be explicitly used by clients 
of the CAFE library under normal usage.  However, to support the implementation of 
a custom data transfer pipeline we have maintained a simple, public interface. 
 
CafeJob Members: 
 

A CafeJob stores the two addresses: mToAddr and mFromAddr.  These are PPU 
addresses, where mFromAddr designates where the payload starts when being 
transferred to the PPU, and mToAddr designates the starting address to where 
the payload should be DMAed on a return trip. 
 
mSizeInBytes stores the size of the payload (in bytes). 
 
mOffsetInBytes stores offset of the real data (in bytes) in the payload from 
the beginning of the DMA-compliant payload. 
 
mElementCount stores the number of elements present in this payload 
according to a given stride. 
 
mChunkCount stores the number of DMA-sized chunks is required to transfer 
the entire payload.  All but the last of these chunks is the maximum allowed 
DMA transfer size: 16 KB. 
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CafeJobQueue: 
 
CafeJobQueue holds a list of CafeJobs.  While a CafeJob represents a single data 
payload (constrained by the available space on the SPU local store), a CafeJobQueue 
represents a complete DMA-compliant partitioning of a dataset.  As such, by 
processing the data provided by all of the CafeJobs in a CafeJobQueue, the client will 
have processed all of the data within the original dataset from the PPU. 
 
The CafeJobQueue is responsible for the memory of the CafeJobs it contains, but not 
the memory of the corresponding dataset. 
 
CafeJobQueues are generated by a factory called the CafeJobQueueGenerator.  They 
may be partitioned into subqueues by calling the PartitionIntoSubqueues() routine 
described below. 
 
CafeJobQueue Member Functions: 
 

void Init(const int jobCount) 
 

Allocates the memory for the CafeJobs and sets the mJobCount member. 
 

 
 void Clear() 

 
Clears the memory of the CafeJobs to NULL. 
 

 
 void PartitionIntoSubqueues(CafeJobQueue* subqueues, 

const int subqueueCount) const 
 
Partitions the CafeJobQueue into the given number of subqueues, which are 
returned in the given array of CafeJobQueues.  The partitioning method used is 
data cyclic. 
 

 
 int GetJobCount() const 

 
Returns the number of CafeJobs in the queue. 
 
 

 int GetElementCount() const 
 

Returns the number of elements in the entire CafeJobQueue. 
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CafeJobQueueGenerator: 
 
CafeJobQueueGenerator is a namespace with a pair of data-partitioning utility 
functions.  Both routines produce CafeJobQueues from a dataset (given in the form of 
a MemoryRegion). 
 
CafeJobQueueGenerator Functions: 
 
 CafeJobQueue* GenerateJobQueue(const MemoryRegion& memRegion, 

const int maxJobSizeInBytes, const int strideSizeInBytes) 
 

This GenerateJobQueue() routine takes in a dataset in the form of a 
MemoryRegion and partitions it into a number of CafeJobs, which each can 
hold up to the given constraint of maxJobSizeInBytes (we call this data 
segment a “payload”).  During partitioning, payloads will respect the 
boundaries of objects within the data buffer via the strideSizeInBytes 
parameter, which is used to ensure no object is split amongst the jobs within 
the resultant queue. 

 
 

CafeJobQueue* GenerateJobQueue(const MemoryRegion& memRegion,  
const int maxJobSizeInBytes, const int strideSizeInBytes, 
const int rowSizeInBytes, const int ghostRowCount, 
const unsigned int scratchBufferAddr) 

 
This GenerateJobQueue() routine also takes in a dataset in the form of a 
MemoryRegion and partitions it into a number of CafeJobs.  However, this 
routine is specialized for overlapping partitioning.  In addition to the 
parameters outlined in the former version, this routine requires the size of a 
row of data (in bytes), the number of ghost rows it should account for, and the 
address to where the SPU should DMA the processed results. 
 
This version is especially useful in stencil applications, such as image 
processing, fluid dynamics simulations, and connected component labeling. 
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Data Transfer Utilities 
 
In this section we outline the data transfer utilities provided in the CAFE library. 
 
 
CafeJobDmaManager: 
 
CafeJobDmaManager is a class that provides the functionality for transferring the 
payload represented by a CafeJob to and from the SPU.  The DMA routines have 
been split into pairs: InitiateDma*() and FinalizeDma*(), so that multi-buffering 
may be employed. 
 
The CafeJobDmaManager stores the CafeJob and uses it to complete the DMA 
requests.  This is handy if the client does need explicit control over the CafeJob, but is 
rather just interested in the payload.  If the client is in fact interested in explicitly 
controlling or utilizing the CafeJob, we recommend using the routines provided in the 
CafeJobDmaHelpers namespace to accomplish the same end. 
 
Creating a CafeJobDmaManager: 
 

CafeJobDmaManager(const unsigned int cafeJobAddr, 
const unsigned int cafeJobTag) 

 
Requires the address to the CafeJob to retrieve and store and a DMA tag.  This 
DMA tag will be used throughout the life of the CafeJobDmaManager in all of 
the DMA transactions it makes. 

 
 
CafeJobDmaManager Functions: 
 

void InitiateDmaFromPpu(MemoryRegion& memRegion) 
void FinalizeDmaFromPpu() 

 
This pair of routines comprises a complete DMA transfer of the CafeJob 
payload from the PPU to the SPU.  The InitiateDmaFromPpu() function 
sends out the asynchronous DMA requests with the DMA tag given in the  
CafeJobDmaManager constructor.  These DMA requests are waited on as a 
group by calling the FinalizeDmaFromPpu() routine. 
 
 
void InitiateDmaToPpu(MemoryRegion& memRegion) 
void FinalizeDmaToPpu() 

 
This pair of routines comprises a complete DMA transfer of the CafeJob 
payload from the SPU to the PPU.  These work in similar fashion to the pair of 
routines outlined above. 
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CafeJobDmaHelpers: 
 
CafeJobDmaHelpers is a namespace that provides the functionality for transferring 
the payload represented by a CafeJob to and from the SPU.  The DMA routines have 
been split into pairs: InitiateDma and FinalizeDma, so that multi-buffering may be 
employed. 
 
In fact, the CafeJobDmaHelpers namespace provides the exact same functionality as 
the CafeJobDmaManager.  This is to give clients the option of explicitly controlling the 
CafeJob.  The CafeJobDmaManager must keep the same CafeJob around until it is 
destroyed because it owns the CafeJob memory.  The CafeJobDmaHelpers interface 
does not have this constraint. 
 
As such, the CafeJobDmaHelpers interface provides a routine for retrieving a 
CafeJob, as well as the same payload transfer functions found in the 
CafeJobDmaManager. 
 
CafeJobDmaHelpers Functions: 
 

void DmaCafeJobFromPpu(CafeJob& cafeJob, 
const unsigned int cafeJobAddr, 
const unsigned int dmaTag) 

 
The DmaCafeJobFromPpu() routine retrieves the CafeJob from the given PPU 
address using the given DMA tag.  It should be noted that this routine allows 
the client to control the memory allocated for the CafeJob; however, this 
client-owned CafeJob must be created to be DMA-compliant. 

 
 

void InitiateDmaFromPpu(MemoryRegion& memRegion, 
const CafeJob& cafeJob, const unsigned int dmaTag)  

void FinalizeDmaFromPpu(const unsigned int dmaTag) 
 
This pair of routines comprises a complete DMA transfer of the CafeJob 
payload from the PPU to the SPU.  The InitiateDmaFromPpu() function 
sends out the asynchronous DMA requests for the chucks in the CafeJob with 
the given DMA tag.  These DMA requests are waited on as a group by calling 
the FinalizeDmaFromPpu() routine with the same DMA tag the payload was 
requested with. 
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void InitiateDmaToPpu(MemoryRegion& memRegion, 

const CafeJob& cafeJob, const unsigned int dmaTag)  
void FinalizeDmaToPpu(const unsigned int dmaTag) 

 
This pair of routines comprises a complete DMA transfer of the CafeJob 
payload from the SPU to the PPU.  These work in similar fashion to the pair of 
routines outlined above. 
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Synchronization Utilities 
 
In this section we outline the synchronization utilities provided in the CAFE library. 
 
 
Barrier: 
 
The Barrier namespace contains a pair of functions (one for each processor type) that 
implements a PPU-coordinated barrier via the use of mailboxes. 
 
PPU only: 
 

bool SyncSpus(speid_t* speids, const int kSpuCount) 
 
Coordinates the barrier across the given SPUs.  Returns false if barrier fails to 
execute; an error message is printed to stderr. 

 
 
SPU only: 
 

bool SyncSpus(const int sendMsg) 
 
Signals PPU this SPU has reached the barrier and waits while PPU coordinates 
with other SPUs.  The sendMsg parameter is the message sent to the PPU; 
upon successful execution, this same message will be returned from the PPU 
once all SPUs have been synchronized.  Returns false if barrier fails to 
execute; an error message is printed to stderr. 
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