Skip to main content
Download PDF
- Main
Inflammatory regulation of glucocorticoid metabolism in mesenchymal stromal cells
- Ahasan, Mohammad M;
- Hardy, Rowan;
- Jones, Christopher;
- Kaur, Kirren;
- Nanus, Dominika;
- Juarez, Maria;
- Morgan, Stuart A;
- Hassan‐Smith, Zaki;
- Bénézech, Cécile;
- Caamaño, Jorge H;
- Hewison, Martin;
- Lavery, Gareth;
- Rabbitt, Elizabeth H;
- Clark, Andrew R;
- Filer, Andrew;
- Buckley, Christopher D;
- Raza, Karim;
- Stewart, Paul M;
- Cooper, Mark S
- et al.
Published Web Location
https://doi.org/10.1002/art.34414Abstract
Objective
Tissue glucocorticoid (GC) levels are regulated by the GC-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). This enzyme is expressed in cells and tissues arising from mesenchymal stromal cells. Proinflammatory cytokines dramatically increase expression of 11β-HSD1 in stromal cells, an effect that has been implicated in inflammatory arthritis, osteoporosis, obesity, and myopathy. Additionally, GCs act synergistically with proinflammatory cytokines to further increase enzyme expression. The present study was undertaken to investigate the mechanisms underlying this regulation.Methods
Gene reporter analysis, rapid amplification of complementary DNA ends (RACE), chemical inhibition experiments, and genetic disruption of intracellular signaling pathways in mouse embryonic fibroblasts (MEFs) were used to define the molecular mechanisms underlying the regulation of 11β-HSD1 expression.Results
Gene reporter, RACE, and chemical inhibitor studies demonstrated that the increase in 11β-HSD1 expression with tumor necrosis factor α (TNFα)/interleukin-1β (IL-1β) occurred via the proximal HSD11B1 gene promoter and depended on NF-κB signaling. These findings were confirmed using MEFs with targeted disruption of NF-κB signaling, in which RelA (p65) deletion prevented TNFα/IL-1β induction of 11β-HSD1. GC treatment did not prevent TNFα-induced NF-κB nuclear translocation. The synergistic enhancement of TNFα-induced 11β-HSD1 expression with GCs was reproduced by specific inhibitors of p38 MAPK. Inhibitor and gene deletion studies indicated that the effects of GCs on p38 MAPK activity occurred primarily through induction of dual-specificity phosphatase 1 expression.Conclusion
The mechanism by which stromal cell expression of 11β-HSD1 is regulated is novel and distinct from that in other tissues. These findings open new opportunities for development of therapeutic interventions aimed at inhibiting or stimulating local GC levels in cells of mesenchymal stromal lineage during inflammation.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%