Skip to main content
eScholarship
Open Access Publications from the University of California

Oligogenic inheritance of a human heart disease involving a genetic modifier.

  • Author(s): Gifford, Casey A
  • Ranade, Sanjeev S
  • Samarakoon, Ryan
  • Salunga, Hazel T
  • de Soysa, T Yvanka
  • Huang, Yu
  • Zhou, Ping
  • Elfenbein, Aryé
  • Wyman, Stacia K
  • Bui, Yen Kim
  • Cordes Metzler, Kimberly R
  • Ursell, Philip
  • Ivey, Kathryn N
  • Srivastava, Deepak
  • et al.

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557373/
No data is associated with this publication.
Abstract

Complex genetic mechanisms are thought to underlie many human diseases, yet experimental proof of this model has been elusive. Here, we show that a human cardiac anomaly can be caused by a combination of rare, inherited heterozygous mutations. Whole-exome sequencing of a nuclear family revealed that three offspring with childhood-onset cardiomyopathy had inherited three missense single-nucleotide variants in the MKL2, MYH7, and NKX2-5 genes. The MYH7 and MKL2 variants were inherited from the affected, asymptomatic father and the rare NKX2-5 variant (minor allele frequency, 0.0012) from the unaffected mother. We used CRISPR-Cas9 to generate mice encoding the orthologous variants and found that compound heterozygosity for all three variants recapitulated the human disease phenotype. Analysis of murine hearts and human induced pluripotent stem cell-derived cardiomyocytes provided histologic and molecular evidence for the NKX2-5 variant's contribution as a genetic modifier.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item