Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Mn-intercalated MoSe2 under pressure: Electronic structure and vibrational characterization of a dilute magnetic semiconductor

Published Web Location

https://doi.org/10.1063/5.0018716
Abstract

Intercalation offers a promising way to alter the physical properties of two-dimensional (2D) layered materials. Here, we investigate the electronic and vibrational properties of 2D layered MoSe2 intercalated with atomic manganese at ambient and high pressure up to 7 GPa by Raman scattering and electronic structure calculations. The behavior of optical phonons is studied experimentally with a diamond anvil cell and computationally through density functional theory calculations. Experiment and theory show excellent agreement in optical phonon behavior. The previously Raman inactive A2u mode is activated and enhanced with intercalation and pressure, and a new Raman mode appears upon decompression, indicating a possible onset of a localized structural transition, involving the bonding or trapping of the intercalant in 2D layered materials. Density functional theory calculations reveal a shift of the Fermi level into the conduction band and spin polarization in MnxMoSe2 that increases at low Mn concentrations and low pressure. Our results suggest that intercalation and pressurization of van der Waals materials may allow one to obtain dilute magnetic semiconductors with controllable properties, providing a viable route for the development of new materials for spintronic applications.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View