Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

A novel α-conopeptide Eu1.6 inhibits N-type (CaV2.2) calcium channels and exhibits potent analgesic activity.

Abstract

We here describe a novel α-conopeptide, Eu1.6 from Conus eburneus, which exhibits strong anti-nociceptive activity by an unexpected mechanism of action. Unlike other α-conopeptides that largely target nicotinic acetylcholine receptors (nAChRs), Eu1.6 displayed only weak inhibitory activity at the α3β4 and α7 nAChR subtypes and TTX-resistant sodium channels, and no activity at TTX-sensitive sodium channels in rat dorsal root ganglion (DRG) neurons, or opiate receptors, VR1, KCNQ1, L- and T-type calcium channels expressed in HEK293 cells. However, Eu1.6 inhibited high voltage-activated N-type calcium channel currents in isolated mouse DRG neurons which was independent of GABAB receptor activation. In HEK293 cells expressing CaV2.2 channels alone, Eu1.6 reversibly inhibited depolarization-activated Ba2+ currents in a voltage- and state-dependent manner. Inhibition of CaV2.2 by Eu1.6 was concentration-dependent (IC50 ~1 nM). Significantly, systemic administration of Eu1.6 at doses of 2.5-5.0 μg/kg exhibited potent analgesic activities in rat partial sciatic nerve injury and chronic constriction injury pain models. Furthermore, Eu1.6 had no significant side-effect on spontaneous locomotor activity, cardiac and respiratory function, and drug dependence in mice. These findings suggest α-conopeptide Eu1.6 is a potent analgesic for the treatment of neuropathic and chronic pain and opens a novel option for future analgesic drug design.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View