Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

The Influence of Intraseasonal Oscillations on Humid Heat in the Persian Gulf and South Asia

Abstract

Humans' essential ability to combat heat stress through sweat-based evaporative cooling is modulated by ambient air temperature and humidity, making humid heat a critical factor for human health. In this study, we relate the occurrence of extreme humid heat in two focus regions to two related modes of intraseasonal climate variability: the Madden-Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). In the Persian Gulf and South Asia during the May-June and July-August seasons, wet-bulb temperatures of 288C are found to be almost twice as likely during certain oscillation phases than in others. Variations in moisture are found, to varying degrees, to be an important ingredient in anomalously high wet-bulb temperatures in all three areas studied, influenced by distinct local circulation anomalies. In the Persian Gulf, weakening of climatological winds associated with the intraseasonal oscillation's propagating center of convection allows for anomalous onshore advection of humid air. Anomalously high wet-bulb temperatures in the northwestern region of South Asia are closely aligned with positive specific humidity anomalies associated with the convectively active phase of the oscillation. On the southeastern coast of India, high wet-bulb temperatures are associated with convectively inactive phases of the intraseasonal oscillation, suggesting that they may be driven by increased surface insolation and reduced evaporative cooling during monsoon breaks. Our results aid in building a foundation for subseasonal predictions of extreme humid heat in regions where it is highly impactful.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View