Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

EPiK-a Workflow for Electron Tomography in Kepler1

Abstract

Scientific workflows integrate data and computing interfaces as configurable, semi-automatic graphs to solve a scientific problem. Kepler is such a software system for designing, executing, reusing, evolving, archiving and sharing scientific workflows. Electron tomography (ET) enables high-resolution views of complex cellular structures, such as cytoskeletons, organelles, viruses and chromosomes. Imaging investigations produce large datasets. For instance, in Electron Tomography, the size of a 16 fold image tilt series is about 65 Gigabytes with each projection image including 4096 by 4096 pixels. When we use serial sections or montage technique for large field ET, the dataset will be even larger. For higher resolution images with multiple tilt series, the data size may be in terabyte range. Demands of mass data processing and complex algorithms require the integration of diverse codes into flexible software structures. This paper describes a workflow for Electron Tomography Programs in Kepler (EPiK). This EPiK workflow embeds the tracking process of IMOD, and realizes the main algorithms including filtered backprojection (FBP) from TxBR and iterative reconstruction methods. We have tested the three dimensional (3D) reconstruction process using EPiK on ET data. EPiK can be a potential toolkit for biology researchers with the advantage of logical viewing, easy handling, convenient sharing and future extensibility.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View