Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Anesthetic Management Using Multiple Closed-loop Systems and Delayed Neurocognitive Recovery: A Randomized Controlled Trial.

Abstract

Background

Cognitive changes after anesthesia and surgery represent a significant public health concern. We tested the hypothesis that, in patients 60 yr or older scheduled for noncardiac surgery, automated management of anesthetic depth, cardiac blood flow, and protective lung ventilation using three independent controllers would outperform manual control of these variables. Additionally, as a result of the improved management, patients in the automated group would experience less postoperative neurocognitive impairment compared to patients having standard, manually adjusted anesthesia.

Methods

In this single-center, patient-and-evaluator-blinded, two-arm, parallel, randomized controlled, superiority study, 90 patients having noncardiac surgery under general anesthesia were randomly assigned to one of two groups. In the control group, anesthesia management was performed manually while in the closed-loop group, the titration of anesthesia, analgesia, fluids, and ventilation was performed by three independent controllers. The primary outcome was a change in a cognition score (the 30-item Montreal Cognitive Assessment) from preoperative values to those measures 1 week postsurgery. Secondary outcomes included a battery of neurocognitive tests completed at both 1 week and 3 months postsurgery as well as 30-day postsurgical outcomes.

Results

Forty-three controls and 44 closed-loop patients were assessed for the primary outcome. There was a difference in the cognition score compared to baseline in the control group versus the closed-loop group 1 week postsurgery (-1 [-2 to 0] vs. 0 [-1 to 1]; difference 1 [95% CI, 0 to 3], P = 0.033). Patients in the closed-loop group spent less time during surgery with a Bispectral Index less than 40, had less end-tidal hypocapnia, and had a lower fluid balance compared to the control group.

Conclusions

Automated anesthetic management using the combination of three controllers outperforms manual control and may have an impact on delayed neurocognitive recovery. However, given the study design, it is not possible to determine the relative contribution of each controller on the cognition score.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View