Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Sensitivity of ocean circulation to warming during the Early Eocene greenhouse.

Abstract

Multiple abrupt warming events (hyperthermals) punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δ13C) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulations sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δ13C and δ18O) throughout the Early Eocene Climate Optimum (~53.26 to 49.14 Ma) from the deep equatorial and North Atlantic. Combined with existing records from the South Atlantic and Pacific, these indicate consistently amplified δ13C excursion sizes during hyperthermals in the deep equatorial Atlantic. We compare these observations with results from an intermediate complexity Earth system model to demonstrate that this spatial pattern of δ13C excursion size is a predictable consequence of global warming-induced changes in ocean overturning circulation. In our model, transient warming drives the weakening of Southern Ocean-sourced overturning circulation, strengthens Atlantic meridional water mass aging gradients, and amplifies the magnitude of negative δ13C excursions in the equatorial to North Atlantic. Based on model-data consistency, we conclude that Eocene hyperthermals coincided with repeated weakening of the global overturning circulation. Not accounting for ocean circulation impacts on δ13C excursions will lead to incorrect estimates of the magnitude of carbon release driving hyperthermals. Our finding of weakening overturning in response to past transient climatic warming is consistent with predictions of declining Atlantic Ocean overturning strength in our warm future.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View