Haplotype-aware pantranscriptome analyses using spliced pangenome graphs
Published Web Location
http://doi.org/10.1101/2021.03.26.437240Abstract
Pangenomics is emerging as a powerful computational paradigm in bioinformatics. This field uses population-level genome reference structures, typically consisting of a sequence graph, to mitigate reference bias and facilitate analyses that were challenging with previous reference-based methods. In this work, we extend these methods into transcriptomics to analyze sequencing data using the pantranscriptome: a population-level transcriptomic reference. Our novel toolchain can construct spliced pangenome graphs, map RNA-seq data to these graphs, and perform haplotype-aware expression quantification of transcripts in a pantranscriptome. This workflow improves accuracy over state-of-the-art RNA-seq mapping methods, and it can efficiently quantify haplotype-specific transcript expression without needing to characterize a sample’s haplotypes beforehand.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.