Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Potential role of MRN-100, an iron-based compound, in upregulating production of cytokine IL-10 in human dendritic cells to promote an anti-inflammatory response in vitro

Abstract

The hydroferrate fluid MRN-100, an iron-based compound with potent antioxidant characteristics, was examined to identify its possible anti-inflammatory effects on human dendritic cells (DCs) in vitro. Human monocyte-derived DCs were treated with MRN-100 at two concentrations (50 and 100 μL/mL) for 24 h and then stimulated with or without lipopolysaccharides (LPS). The expression of DC maturation markers was assessed by flow cytometry and the production of cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Functional assay was performed by co-culturing MRN-100-treated and untreated DCs with allogeneic naïve CD4+ T cells and assaying the T cells' cytokine production. Results show that treatment with MRN-100 significantly upregulated the co-stimulatory molecules CD80 and CD86 and increased human leukocyte antigen-DR (HLA-DR) though not significantly. MRN-100 treatment also significantly increased the production of the anti-inflammatory cytokine interleukin (IL)-10. On the other hand, MRN-100 significantly induced the secretion of pro-inflammatory cytokines such as IL-6 only at high concentrations. Furthermore, DCs pretreated with MRN-100 and either stimulated or not with LPS were able to prime CD4+ T cells to secrete significant amounts of IL-10 while inhibiting the secretion of pro-inflammatory cytokine tumor necrosis factor (TNF)-α. These results indicate that MRN-100 is a powerful anti-inflammatory agent that promotes the generation of an anti-inflammatory immune response in vitro. MRN-100 could be beneficial for treating patients with inflammatory diseases, including arthritis and type 1 diabetes, and its potential benefits should be examined in clinical trials.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View