Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Lumbar spine postures in Marines during simulated operational positions.

Published Web Location

https://doi.org/10.1002/jor.23510
Abstract

Low back pain has a 70% higher prevalence in members of the armed forces than in the general population, possibly due to the loads and positions soldiers experience during training and combat. Although the influence of heavy load carriage on standing lumbar spine posture in this population is known, postures in other operationally relevant positions are unknown. Therefore, the purpose of this study was to characterize the effect of simulated military operational positions under relevant loading conditions on global and local lumbar spine postures in active duty male US Marines. Secondary objectives were to evaluate if intervertebral disc degeneration and low back pain affect lumbar spine postures. Magnetic resonance images were acquired on an upright scanner in the following operational positions: Natural standing with no external load, standing with body armor (11.3 kg), sitting with body armor, and prone on elbows with body armor. Custom software was used to measure global lumbar spine posture: Lumbosacral flexion, sacral slope, lordosis, local measures of intervertebral angles, and intervertebral distances. Sitting resulted in decreased lumbar lordosis at all levels of the spine except L1-L2. When subjects were prone on elbows, a significant increase in local lordosis was observed only at L5-S1 compared with all other positions. Marines with disc degeneration (77%) or history of low back pain (72%) had decreased lumbar range of motion and less lumbar extension than healthy Marines. These results indicate that a male Marine's pathology undergoes a stereotypic set of postural changes during functional tasks, which may impair performance. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2145-2153, 2017.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View