Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Low Concentrations of Silver Nanoparticles and Silver Ions Perturb the Antioxidant Defense System and Nitrogen Metabolism in N2‑Fixing Cyanobacteria

Abstract

Although toxic effects of silver nanoparticles (AgNPs) on aquatic organisms have been extensively reported, responses of nitrogen-fixing cyanobacteria to AgNPs/Ag+ under environmentally relevant concentrations are largely unknown. Here, cyanobacteria were exposed to different concentrations of AgNPs (0.01, 0.1, and 1 mg/L) or Ag+ (0.1, 1, and 10 μg/L) for 96 h. The impacts of AgNPs and Ag+ on photosynthesis and N2 fixation in cyanobacteria (Nostoc sphaeroides) were evaluated. In addition, gas chromatography-mass spectrometry (GC-MS)-based metabolomics was employed to give an instantaneous snapshot of the physiological status of the cells under AgNP/Ag+ exposure. Exposure to high doses of AgNPs (1 mg/L) or Ag+ (10 μg/L) caused growth inhibition, reactive oxygen species overproduction, malondialdehyde accumulation, and decreased N2 fixation. In contrast, low doses of AgNPs (0.01 and 0.1 mg/L) and Ag+ (0.1 and 1 μg/L) did not induce observable responses. However, metabolomics revealed that metabolic reprogramming occurred even at low concentrations of AgNP and Ag+ exposure. Levels of a number of antioxidant defense-related metabolites, especially phenolic acid and polyphenols (gallic acid, resveratrol, isochlorogenic acid, chlorogenic acid, cinnamic acid, 3-hydroxybenzoic acid, epicatechin, catechin, and ferulic acid), significantly decreased in response to AgNPs or Ag+. This indicates that AgNPs and Ag+ can disrupt the antioxidant defense system and disturb nitrogen metabolism even at low-dose exposure. Metabolomics was shown to be a powerful tool to detect "invisible" changes, not observable by typical phenotypic-based endpoints.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View