Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Functional signal- and paradigm-dependent linear relationships between synaptic activity and hemodynamic responses in rat somatosensory cortex

Abstract

Linear relationships between synaptic activity and hemodynamic responses are critically dependent on functional signal etiology and paradigm. To investigate these relationships, we simultaneously measured local field potentials (FPs) and optical intrinsic signals in rat somatosensory cortex while delivering a small number of electrical pulses to the hindpaw with varied stimulus intensity, number, and interstimulus interval. We used 570 and 610 nm optical signals to estimate cerebral blood volume (CBV) and oxygenation, respectively. The spatiotemporal evolution patterns and trial-by-trial correlation analyses revealed that CBV-related optical signals have higher fidelity to summed evoked FPs (SigmaFPs) than oxygenation-derived signals. CBV-related signals even correlated with minute SigmaFP fluctuations within trials of the same stimulus condition. Furthermore, hemodynamic signals (CBV and late oxygenation signals) increased linearly with SigmaFP while varying stimulus number, but they exhibited a threshold and steeper gradient while varying stimulus intensity, suggesting insufficiency of the homogeneity property of linear systems and the importance of spatiotemporal coherence of neuronal population activity in hemodynamic response formation. These stimulus paradigm-dependent linear and nonlinear relationships demonstrate that simple subtraction-based analyses of hemodynamic signals produced by complex stimulus paradigms may not reflect a difference in SigmaFPs between paradigms. Functional signal- and paradigm-dependent linearity have potentially profound implications for the interpretation of perfusion-based functional signals.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View