Skip to main content
Open Access Publications from the University of California

Plasma Inter-Particle and Particle-Wall Interactions

  • Author(s): Patino, Marlene Idy
  • Advisor(s): Wirz, Richard E
  • et al.

An improved understanding of plasma inter-particle and particle-wall interactions is critical to the advancement of plasma devices used for space electric propulsion, fusion, high-power communications, and next-generation energy systems. Two interactions of particular importance are (1) ion-atom collisions in the plasma bulk and (2) secondary electron emission from plasma-facing materials.

For ion-atom collisions, interactions between fast ions and slow atoms are commonly dominated by charge-exchange and momentum-exchange collisions that are important to understanding the performance and behavior of many plasma devices. To investigate this behavior, this work developed a simple, well-characterized experiment that accurately measures the effects of high energy xenon ions incident on a background of xenon neutral atoms. By comparing these results to both analytical and computational models of ion-atom interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange collisions over all neutral background pressures, and (2) commonly overlooked interactions, including ion-induced electron emission and neutral-neutral ionization collisions, at high pressures. Data provide vital information on the angular scattering distributions of charge-exchange and momentum-exchange ions at 1.5 keV relevant for ion thrusters, and serve as canonical data for validation of plasma models.

This work also investigates electron-induced secondary electron emission behavior relevant to materials commonly considered for plasma thrusters, fusion systems, and many other plasma devices. For such applications, secondary electron emission can alter the sheath potential, which can significantly affect device performance and life. Secondary electron emission properties were measured for materials that are critical to the efficient operation of many plasma devices, including: graphite (for tokamaks, ion thrusters, and traveling wave tubes), lithium (for tokamak walls), tungsten (the most promising material for future tokamaks such as ITER), and nickel (for plasma-enhanced chemistry). Measurements were made for incident electron energies up to 1.5 keV and angles between 0 and 78�.

The most significant results from these measurements are as follows: (1) first-ever measurements of naturally-forming tungsten fuzz show a more than 40% reduction in secondary electron emission and an independence on incidence angle; (2) original measurements of lithium oxide show a 2x and 6x increase in secondary electron emission for 17% and 100% oxidation; and (3) unique measurements of Ni(110) single crystal show extrema in secondary electron emission when incidence angle is varied and an up to 36% increase at 0� over polycrystalline nickel. Each of these results are important discoveries for improving plasma devices. For example, from (1), the growth of tungsten fuzz in tokamaks is desirable for minimizing adverse secondary electron emission effects. From (2), the opposite is true for tokamaks with lithium coatings which are oxidized by typical residual gases. From (3), secondary electron emission from Ni(110) catalysts in plasma-enhanced chemistry may facilitate further reactions.

Main Content
Current View