Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Production of high protein yeast using enzymatically liquefied almond hulls.

Abstract

Animal feed ingredients, especially those abundant in high quality protein, are the most expensive component of livestock production. Sustainable alternative feedstocks may be sourced from abundant, low value agricultural byproducts. California almond production generates nearly 3 Mtons of biomass per year with about 50% in the form of hulls. Almond hulls are a low-value byproduct currently used primarily for animal feed for dairy cattle. However, the protein and essential amino acid content are low, at ~30% d.b.. The purpose of this study was to improve the protein content and quality using yeast. To achieve this, the almond hulls were liquefied to liberate soluble and structural sugars. A multi-phase screening approach was used to identify yeasts that can consume a large proportion of the sugars in almond hulls while accumulating high concentrations of amino acids essential for livestock feed. Compositional analysis showed that almond hulls are rich in polygalacturonic acid (pectin) and soluble sucrose. A pectinase-assisted process was optimized to liquefy and release soluble sugars from almond hulls. The resulting almond hull slurry containing solubilized sugars was subsequently used to grow high-protein yeasts that could consume nutrients in almond hulls while accumulating high concentrations of high-quality protein rich in essential amino acids needed for livestock feed, yielding a process that would produce 72 mg protein/g almond hull. Further work is needed to achieve conversion of galacturonic acid to yeast cell biomass.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View